Fossil woods have been recovered from Noiti to the south of the main Laetoli area and are of Lower Laetolil Bed age. Preservation is generally poor because of recrystalization but a variety of taxa have been tentatively identified. Where there is some uncertainty about the identification several possibilities have been given. The fossil woods are from the families Araliaceae, Buddlejiaceae, Caesalpinoideae, Celastraceae, Combretaceae, Dichapetalaceae, Euphorbi­aceae, Flacourtiaceae, Meliaceae, Mimosoideae, Myrtaceae, Ochnaceae, Rhamnaceae, Rubiaceae, Rutaceae and Verben­aceae. The flora represents woods from high to low altitudes that grew on the slopes of the volcano and were preserved in a lahar. A variety of soils and vegetation associations are implied from forest, evergreen woodland, dry woodland, bushland, riverine and wooded grassland, in a megathermal environment. Both taxonomic affinities and the vulnerability indices (non-taxonomic) of the woods are used to infer the paleoenvironment.


Silicified wood vegetation associations montane woodland 



I am grateful to Louis Scott and Terry Harrison for the invitation to take part in the Laetoli expeditions, and to all the team members who helped collect fossil woods. Mr. D. Mbense is thanked for making the thin sections. The Tanzanian Commission for Science and Technology (COSTECH), the Tanzanian Department of Antiquities and the Ngorongoro Conservation Area Authority are also thanked for providing permits to carry out the research. This work was supported by NSF grants BCS-9903434 and BCS-0309513 (to Terry Harrison) and a PAST (Palaeontological Scientific Trust, South Africa) grant (to MKB).


  1. Andrews, P. (1989). Palaeoecology of Laetoli. Journal of Human Evolution, 18, 173–181.CrossRefGoogle Scholar
  2. Andrews, P. J., Bamford, M. K., Njau, E. F., & Leliyo, G. (2011). Past and present vegetation ecology of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 167–200). Dordrecht: Springer.Google Scholar
  3. Baas, P., Werker, E., & Fahn, A. (1983). Some ecological trends in vessel characters. IAWA Bulletin, n.s. 4, 141–159.CrossRefGoogle Scholar
  4. Baas, P., Esser, P. M., & van der Westen, M. E. T. (1988). Wood anatomy of the Oleaceae. IAWA Bulletin, n.s. 9, 103–182.CrossRefGoogle Scholar
  5. Beentje, H. J. (1994). Kenya trees, shrubs and lianas. Nairobi: National Museums of Kenya.Google Scholar
  6. Bonnefille, R., & Riollet, G. (1987). Palynological spectra from the Upper Laetolil Beds. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 52–61). Oxford: Clarendon.Google Scholar
  7. Buurman, P. (1972). Mineralization of fossil wood. Scripta Geologica, 12, pp. 1–41.Google Scholar
  8. Carlquist, S. (1975). Ecological strategies of xylem evolution. Berkeley: University of California Press.Google Scholar
  9. Coates-Palgrave, K. (2004). Trees of southern Africa (2nd ed.). Cape Town: Struik Publishers. Revised by M. Coates-Palgrave.Google Scholar
  10. Deino, A. L. (2011). 40Ar/39Ar dating of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 77–97). Dordrecht: Springer.Google Scholar
  11. Drake, R., & Curtis, G. H. (1987). K-Ar chronology of the Laetoli fossil localities. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 48–52). Oxford: Clarendon.Google Scholar
  12. Evans, J. A., Gasson, P. E., & Lewis, G. P. (2006). Wood anatomy of the Mimosoideae (Leguminosae). IAWA Journal, Suppl. 5, 117.Google Scholar
  13. Ewers, F. W. (1985). Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bulletin, n.s. 6, 309–317.CrossRefGoogle Scholar
  14. Harrison, T., & Kweka, A. (2011). Paleontological localities on the Eyasi plateau, including Laetoli. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 17–45). Dordrecht: Springer.Google Scholar
  15. Hauman, L. (1958). Dichapetalaceae. In Flore du Congo Belge et du Ruanda-Urundi, Spermatophytes, (Vol. VII, pp. 287–348). Bruxelles: INEAC.Google Scholar
  16. Hay, R. L. (1987). Geology of the Laetolil Beds. In M. D. Leakey & J. M. Harris, (Eds.), Laetoli : A Pliocene site in northern Tanzania (pp. 23–47). Oxford: Clarendon.Google Scholar
  17. Höhn, A. (1999). Wood anatomy of selected West African species of Caesalpinoideae and Mimosoideae (Leguminosae): A comparative study. IAWA Journal, 22, 115–146.CrossRefGoogle Scholar
  18. Ilic, J. (1987). The CSIRO family key for hardwood identification. CSIRO Division Chemical and Wood Technology Technical Paper No. 8.Google Scholar
  19. InsideWood, (2006–2007). Scholar
  20. International Association of Wood Anatomists Committee (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin, n.s. 10, 219–332.Google Scholar
  21. Keay, R. W. J. (1958). Caesalpiniaceae; Combretaceae. In Flora of west tropical Africa (2nd ed., Vol. 1, Part 2, pp. 439–484; Vol. 1, Part 2, pp. 262–281). London: Crown Agents for Overseas Governments and Administrations.Google Scholar
  22. Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstruction of Pliocene herbivores at Laetoli: Implications for early hominin palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.CrossRefGoogle Scholar
  23. Kromhout, C. P. (1975). ‘n Sleutel vir die mikroskopiese uitkenning van die vernaamste inheemse houtsoorte van Suid-Afrika. South African Department of Forestry, Pretoria, Bulletin, 50, 124.Google Scholar
  24. Lebacq, L., & Dechamps, R. (1964). Essai d’identification anatomique des bois d’Afrique centrale. Annales du Musée Royal de l’Afrique Centrale, Tervuren, Belgique. Serie 8. Sciences Economiques, No 3, 1–101.Google Scholar
  25. Mennega, A. M. W. (2005). Wood anatomy of the subfamily Euphorbiaceae – a comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae. IAWA Bulletin, 26, 1–68.CrossRefGoogle Scholar
  26. Metcalfe, C. R., & Chalk, L. (1950). Anatomy of the dicotyledons (vol. 2). Oxford: Clarendon.Google Scholar
  27. Miller, R. B. (1975). Systematic anatomy of the xylem and comments on the relationships of the Flacourtiaceae. Journal of the Arnold Arboretum, 56, 20–102.Google Scholar
  28. Mollel, G. F., Swisher, C. C., Feigenson, M. D., & Carr, M. J. (2011). Petrology, geochemistry and age of Satiman, Lemagurut and Oldeani: Sources of the volcanic deposits of the Laetoli area. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoe­cology, and paleoenvironment, vol. 1, pp. 99–119). Dordrecht: Springer.Google Scholar
  29. Mosbrugger, V., & Utescher, T. (1997). The coexistence approach – a method for quantitive reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeo­climatology, Palaeoecology, 134, 61–86.CrossRefGoogle Scholar
  30. Oliver, D. (1871). Caesalpinieae; Combretaceae. In Flora of tropical Africa. I (Vol. I, pp. 258–321; Vol. II, pp. 413–436). London: Reeve.Google Scholar
  31. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.CrossRefGoogle Scholar
  32. Robbertse, P. J., Venter, G., & Janse van Rensburg, H. (1980). The wood anatomy of the South African acacias. IAWA Bulletin, 1, pp. 93–103.CrossRefGoogle Scholar
  33. Stanier, P., & Gilbert, G. (1958). Meliaceae. In Flore du Congo Belge et du Ruanda-Urundi, Spermatophytes (Vol. VII, pp. 147–213). Bruxelles: Publications de l’Institut National pour l’Étude Agronomique du Congo Belge (INÉAC).Google Scholar
  34. van Wyk, B., & van Wyk, P. (1997). Field guide to trees of southern Africa. Cape Town: Struik.Google Scholar
  35. Wheeler, E. A., & Baas, P. (1991). A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bulletin, n.s. 12, 275–332.CrossRefGoogle Scholar
  36. Wheeler, E. A., Pearson, C. A., LaPasha, T., Zack, T., & Hatley, W. (1986). Computer-aided wood identification. Reference manual. North Carolina Agricultural Research Service Bulletin, 474, 160.Google Scholar
  37. Wiemann, M. C., Wheeler, E. A., Manchester, S. R., & Portier, K. M. (1998). Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 83–100.CrossRefGoogle Scholar
  38. Wiemann, M. C., Dilcher, D. L., & Manchester, S. R. (2001). Estimation of mean annual temperature from leaf and wood physiognomy. Forest Science, 47, 141–149.Google Scholar
  39. Wolfe, J. A., & Upchurch, G. R. (1987). North American non-marine climates and vegetation during the Late Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 61, 33–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Bernard Price Institute for Palaeontological Research, School of GeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations