Skip to main content

Abstract

Measurement of biosphere–atmosphere exchange of various greenhouse gases requires different techniques. In case of carbon dioxide, the net ecosystem exchange (NEE) is usually measured by the eddy covariance method. In the lack of these measurements in forests, the carbon dioxide uptake can be estimated by detecting changes in sequestrated carbon stocks or by using tree growth (dendrometric) measurements. The soil CO2, CH4, and N2O efflux/exchange rates can be determined using in situ chamber techniques, or laboratory incubation measurements. Static and dynamic, manual and automatic chamber methods, as well as photo-acoustic, gas chromatography, and infrared detections can be used for this purpose. This chapter gives a general overview of the approaches applied in studies presented in this book for evaluating the greenhouse gas exchange between the biosphere and atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abgeko JF, Kita M (2007) A qualitative experiment to analyze microbial activity in topsoil using paper and handmade reflection photometer. J Chem Educ 84:1689–1690

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  Google Scholar 

  • Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound Layer Meteorol 108:397–417

    Article  Google Scholar 

  • Balboa-Murias M, Rojo A, Alvarez J et al (2006) Carbon and nutrient stocks in mature Quercus robur L stands in NW Spain. Ann For Sci 63:557–565

    Article  Google Scholar 

  • Barcza Z (2001) Long term atmosphere/biosphere exchange of CO2 in Hungary. Ph.D. Thesis, Eötvös Loránd University, Department of Meteorology, Budapest. Also available online at http://nimbus.elte.hu/∼bzoli/thesis/

    Google Scholar 

  • Barcza Z, Haszpra L, Kondo H et al (2003) Carbon exchange of grass in Hungary. Tellus 55B:187–196

    Google Scholar 

  • Barcza Z, Kern A, Haszpra L, Kljun N (2009) Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. Agric For Meteorol 149:795–807. doi:10.1016/j.agrformet.2008.10.021

    Article  Google Scholar 

  • Berger BW, Davis KJ, Bakwin PS, Yi C, Zhao C (2001) Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology. J Atmos Oceanic Technol 18:529–542

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA et al (eds) Methods of soil analysis Part 2 Chemical and microbiological properties. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Buchkina NP, Balashov EV, Rizhiya EY, Smith KA (2010) Nitrous oxide emissions from a light-textured arable soil of North-Western Russia: effects of crops, fertilizers, manures and climate parameters. Nutr Cycl Agroecosyst. Available at http://www.citeulike.org/journal/springerlink-100322

    Google Scholar 

  • Bunt JS, Rovira AD (1954) Oxygen uptake and carbon dioxide evolution of heat sterilized soil. Nature 173:1242

    Article  Google Scholar 

  • Byrne AK, Kiely G, Leahy P (2005) CO2 fluxes in adjacent new and permanent temperate grasslands. Agric For Meteorol 135:82–92

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer EH et al (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Christensen S, Simkins S, Tiedje JM (1990) Spatial variation in denitrification: dependency of activity centers on the soil environment. Soil Sci Soc Am J 54:1608–1613

    Article  Google Scholar 

  • Christensen S, Ambus P, Arah JRM et al (1996) Nitrous oxide emission from an agricultural field: comparison between measurements by flux chamber and micro-meteorological techniques. Atmos Environ 30:4183–4190

    Article  Google Scholar 

  • Conen F, Smith A (2000) An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. Eur J Soc Sci 51:111–117

    Google Scholar 

  • Davis KJ, Bakwin PS, Yi C et al (2003) The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower. Glob Change Biol 9:1278–1293

    Article  Google Scholar 

  • de Jong E, Schappeart HJV, Macdonald KB (1974) Carbon dioxide evolution from virgin and cultivated soil as affected by management practices and climate. Can J Soil Sci 54:299–307

    Article  Google Scholar 

  • Delle Vedove G, Alberti G, Peressotti A et al (2007) Automated monitoring of soil respiration: an improved automatic chamber system. Ital J Agron 4:377–382

    Google Scholar 

  • Edward NT (1975) Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Proc Soil Sci Soc Am J 39:361–365

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R et al (2001) Gap-filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Article  Google Scholar 

  • Fan SM, Wofsy SC, Bakwin PS et al (1990) Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon Forest. J Geophys Res 95D:16851–16864

    Article  Google Scholar 

  • Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2-budget in and above a forest canopy. Bound Layer Meteorol 113:201–224

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y et al (2003) A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation. Bound Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  • Freijer JI, Leffelaar PA (1996) Adapted Fick’s law applied to soil respiration. Water Resour Res 32:791–800

    Article  Google Scholar 

  • Führer E, Jagodics A (2009) Carbon stocks in the stands of climate indicator tree species. “KLÍMA-21” Füzetek 57:43–55 (in Hungarian with English summary)

    Google Scholar 

  • Gilmanov TG, Verma SB, Sims PL et al (2003) Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements. Glob Biogeochem Cycles 17:1071

    Article  Google Scholar 

  • Grace J, Lloyd J, McIntyre J et al (1995) Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Glob Change Biol 1:1–12

    Article  Google Scholar 

  • Grace J, Malhi Y, Lloyd J et al (1996) The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Glob Change Biol 2:209–217

    Article  Google Scholar 

  • Grosz B, Horváth L, Machon A (2008) Modelling soil fluxes of nitrogen and carbon gases above a semi arid grassland in Hungary. Cereal Res Com (suppl) 36:1523–1526

    Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT et al (2000) Separating root and soil microbial contributions to soil respiration: a review of method and observations. Biogeochemistry 48:115–146

    Article  Google Scholar 

  • Haszpra L, Barcza Z, Bakwin PS et al (2001) Measuring system for the long-term monitoring of biosphere/atmosphere exchange of carbon dioxide. J Geophys Res 106D:3057–3070

    Article  Google Scholar 

  • Haszpra L, Barcza Z, Davis KJ et al (2005) Long-term tall tower carbon dioxide flux monitoring over an area of mixed vegetation. Agric For Meteorol 132:58–77. doi:101016/jagrformet200507002

    Article  Google Scholar 

  • Hollinger DY, Richardson AD (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25:873–885

    Google Scholar 

  • Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound Layer Meteorol 59:279–296

    Article  Google Scholar 

  • Horváth L, Führer E, Lajtha K (2006) Nitric oxide and nitrous oxide emission from Hungarian forest soils; linked with atmospheric N-deposition. Atmos Environ 40:7786–7795

    Article  Google Scholar 

  • Horváth L, Grosz B, Czóbel S et al (2008a) Measurement of methane and nitrous oxide fluxes in Bodrogköz Hungary; preliminary results. Acta Biol Szeged 52:119–122

    Google Scholar 

  • Horváth L, Grosz B, Machon A et al (2008b) Influence of soil type on N2O and CH4 soil fluxes in Hungarian grasslands. Commun Ecol 9(suppl):75–80

    Article  Google Scholar 

  • Horváth L, Grosz B, MachonA et al (2010) Estimation of nitrous oxide emission from Hungarian semi-arid sandy and loess grasslands; effect of soil parameters grazing irrigation and application of fertilizer. Agric Ecosys Environ (accepted)

    Google Scholar 

  • Houghton JT, Callander BA, Varney SK (eds) (1992) Climate change, 1992. The supplementary report on the IPCC scientific assessment. Supplementary report. Cambridge University Press, Cambridge, 200 pp

    Google Scholar 

  • Járó Z (1995) Yearly organic matter production of the most important semi-natural-, second-growth and man-made forests. Report of OTKA-1385 research project (in Hungarian)

    Google Scholar 

  • Jorgensen JR, Wells CG (1973) The relationship of respiration in organic and mineral soil layers to soil chemical properties. Plant Soil 9:373–387

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y et al (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Article  Google Scholar 

  • Kasparov SV, Minko OI, Amosova Ya M, Perova NE (1986) Approaches for studying soil gas profile functionality. Pochvovedenie 10:127–130 (in Russian)

    Google Scholar 

  • Khalil MAK, Shearer MJ (1993) Sources of methane: an overview. In: Khalil MAK (ed) Atmospheric methane: sources sinks and role in global change. Springer, Berlin, pp 180–198

    Google Scholar 

  • Kimball BA, Lemon ER (1970) Spectra of air pressure fluctuations at the soil surface. J Geophys Res 75:6771–6777

    Article  Google Scholar 

  • Kljun N, Rotach MW, Schmid HP (2002) A three-dimensional backward lagrangian footprint model for a wide range of boundary-layer stratifications. Bound Layer Meteorol 103:205–226

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach MW et al (2004) A simple parameterisation for flux footprint predictions. Bound Layer Meteorol 112:503–523

    Article  Google Scholar 

  • Larionova AA, Rozonova LN, Samoylov TI (1988) Gas exchange dynamics in a grey forest soil profile. Pochvovedenie 11:68–74 (in Russian)

    Google Scholar 

  • Le Mer J, Roger P (2001) Production oxidation emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol 91:39–49

    Article  Google Scholar 

  • Lee X, Massman W, Law B (eds) (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Dordrecht, the Netherlands, p 250

    Google Scholar 

  • Lemon E (1967) Aerodynamic studies of CO2 exchange between the atmosphere and the plant. Harvesting the sun 1967:263–290

    Google Scholar 

  • Lenschow DH, Raupach MR (1991) The attenuation of fluctuations in scalar concentrations through sampling tubes. J Geophys Res 96D:15259–15268

    Article  Google Scholar 

  • Leuning R, Moncrieff J (1990) Eddy-covariance CO2 flux measurements using open- and closed-path CO2 analysers: corrections for analyser water vapour sensitivity and damping of fluctuations in air sampling tubes. Bound Layer Meteorol 53:63–76

    Article  Google Scholar 

  • Levy PE, Hale SE, Nicoll BC (2004) Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry 77:421–430

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Lopes de Gerenu VO, Kurganova IN, Zamolodchikova DG, Kudeyarov VN (2005) Methods for quantifying soil carbon dioxide efflux. In: Eskov AI et al (eds) Methods for analysign soil organic material. VNIPTIOU, Russian Academy of Sciences, Russian, pp 408–423

    Google Scholar 

  • Macfayden A (1963) The contribution of the microfauna to total soil metabolism. In: Doeksen J, Van der Drift J (eds) Soil organisms. North Holland, Amsterdam, 346 pp

    Google Scholar 

  • Macfayden A (1970) Soil metabolism in relation to ecosystem energy flow. In: Phillipson J (ed) Methods of study in soil ecology. IBP/UNESCO Symp, Paris, pp 167–172

    Google Scholar 

  • Machon A, Horváth L, Weidinger T et al (2010) Estimation of net nitrogen flux between the atmosphere and a semi-natural grassland ecosystem in Hungary. Eur J Soil Sci DOI: 10.1111/j.1365-2389.2010.01264.x

    Google Scholar 

  • Massman WJ (1991) The attenuation of concentration fluctuations in turbulent flow through a tube. J Geophys Res 96D:15269–15273

    Article  Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113:121–144

    Article  Google Scholar 

  • Moncrieff JB, Massheder JM, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Sogaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188–189:589–611

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Bound Layer Meteorol 37:17–35

    Article  Google Scholar 

  • Nagy Z, Pintér K, Czóbel S, Balogh J, Horváth L, Fóti S, Barcza Z, Weidinger T, Csintalan Z, Dinh NQ, Grosz B, Tuba Z (2007) The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agric Ecosyst Environ 121:21–29. doi:10.1016/j.agee.2006.12.003

    Article  Google Scholar 

  • Nakayama FS, Kimball BA (1988) Soil carbon dioxide distribution and flux within the open – top chamber. Agron J 80:394–398

    Article  Google Scholar 

  • Parkin TB, De Sutter TM, Prueger JH, KasparTC, Sauer TJ (2006) Field comparison of methods for measuring soil CO2 flux. In: ASA-CSSA-SSSA annual meeting abstracts. 12–16 Nov 2006, Indianapolis, IN (CD-ROM)

    Google Scholar 

  • Paw UKT, Baldocchi DD, Meyers TP et al (2000) Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Bound Layer Meteorol 97:487–511

    Article  Google Scholar 

  • Pearson TRH, Brown SL, Birdsay RA (2007) Measuremenet guidelines for the sequestration of forest carbon. USDA Forest Service, Northern Research Station, General Technical Report NRS No. 18

    Google Scholar 

  • Prather M, Drewent D, Enhalt P et al (1995) Other trace gases and atmospheric chemistry. In: Houghton J et al (eds) Climate change 1994. Cambridge University Press, Cambridge, pp 77–126

    Google Scholar 

  • Pumpanen J, Ilvesniemi H, Hari P (2003) A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci Soc Am J 67:402–413

    Article  Google Scholar 

  • Rastogi M, Singh S, Pathak H (2002) Emission of carbon dioxide from soil. Curr Sci 82:510–517

    Google Scholar 

  • Rayment MB (2000) Closed chamber systems underestimate soil CO2 efflux. Eur J Soil Sci 51:107–110

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439

    Article  Google Scholar 

  • Reth S, Göckede M, Falge E (2005) CO2 Efflux from agricultural soils in Eastern Germany – comparison of a closed chamber system with Eddy Covariance measurements. Theor Appl Climatol 80:105–120

    Article  Google Scholar 

  • Ricciuto DM, Butler MP, Davis KJ, Cook BD, Bakwin PS, Andrews AE, Teclaw RM (2008) Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian synthesis inversion. Agric For Meteorol 148:309–327. doi:10.1016/j.agrformet.2007.08.007

    Article  Google Scholar 

  • Rolston DD (1978) Application of gaseous-diffusion theory to measurement of denitrification. In: Nielsen DR, McDonald JG (eds) Nitrogen in the environment 1: 309–336

    Google Scholar 

  • Sarkadi J, Krámer M, Thamm B (1965) Determination of P-content of calcium and ammonium lactate soil extracts with the ascorbic acid-tin chloride method without heating. Agrokémia és Talajtan 14:75–86 (in Hungarian)

    Google Scholar 

  • Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Soegaard H, Jensen NO, Boegh E et al (2003) Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modeling. Agric For Meteorol 114:153–173

    Article  Google Scholar 

  • Sogachev A, Lloyd JJ (2004) Using a one-and-a-half order closure model of the atmospheric boundary layer for surface flux footprint estimation. Bound Layer Meteorol 112:467–502

    Article  Google Scholar 

  • Steinkamp R, Butterbach-Bahl K, Papen H (2001) Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest Germany. Soil Biol Biochem 33:145–153

    Article  Google Scholar 

  • Stolk PC, Jacobs CMJ, Moors EJ et al (2009) Significant non-linearity in nitrous oxide chamber data and its effect on calculated annual emissions. Biogeosci Discuss 6:115–141

    Article  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS et al (2006) An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric For Meteorol 141:2–18

    Article  Google Scholar 

  • Tóth T, Fórizs I, Kuti L et al (2005) Data on the elements of carbon cycle in a Solonetz and Solonchak soil. Cereal Res Commun 33:133–136

    Article  Google Scholar 

  • Troen I, Petersen EL (1989) European Wind Atlas Published for the Commission of the European Communities Directorate General for Science Research and Development (Brussels Belgium), Risø National Laboratory Roskilde, Denmark, 656 pp

    Google Scholar 

  • van der Molen MK, Gash JHC, Elbers JA (2004) Sonic anemometer (co)sine response and flux measurement II. The effect of introducing an angle of attack dependent calibration. Agric For Meteorol 122:95–109

    Google Scholar 

  • van Laar A, Akça A (1997) Forest mensuration. Cuvillier, Germany, 419 pp

    Google Scholar 

  • Várallyay Gy (1973) A new apparatus for the determination of soil moisture potential in the low suction range. Agrokémia és Talajtan 22:1–22 (in Hungarian)

    Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Article  Google Scholar 

  • Wang WJ, Zu YG, Wang HM et al (2005) Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. J For Res 10:57–60

    Article  Google Scholar 

  • Wang W, Davis KJ, Ricciuto DM, Butler MP (2006) An approximate footprint model for flux measurements in the convective boundary layer. J Atmos Oceanic Technol 23:1384–1394

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Corrections of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Widén B, Lindroth A (2003) A calibration system for soil carbon dioxide – efflux measurement chambers: description and application. Soil Sci Soc Am J 67:327–334

    Article  Google Scholar 

  • Yi C, Davis KJ, Bakwin PS, Berger BW, Marr LC (2000) Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J Geophys Res 105:9991–9999

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Farkas, C. et al. (2011). Methodologies. In: Haszpra, L. (eds) Atmospheric Greenhouse Gases: The Hungarian Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9950-1_5

Download citation

Publish with us

Policies and ethics