Advertisement

Evolution of the Cell’s Mechanical Design

  • David BoalEmail author
  • Cameron Forde
Chapter

Abstract

The mechanical properties of the cell’s structural components influence the size, shape, and functionality of the cell throughout its division cycle. For example, a combination of the plasma membrane’s edge tension and bending resistance sets a lower bound on cell size, while the membrane’s tear resistance sets a pressure-dependent upper bound on the size of cells lacking a cell wall. The division cycle of the simplest cells may be dominated by one or two principles such as the maximization of entropy, or the minimization of energy or structural materials. By studying colonies of cells, modern and fossilized, with techniques from classical and statistical mechanics, a partial history can be charted for the appearance and properties of the simplest cell designs.

Keywords

Cell mechanics membrane elasticity microfossils cell division cycle 

References

  1. Barghoorn ES, Schopf JW (1966) Microorganisms three billion years old from the Precambrian of South Africa. Science 152:758–763CrossRefPubMedGoogle Scholar
  2. Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147:563–577CrossRefPubMedGoogle Scholar
  3. Bennett S, Boal DH, Ruotsalainen H (2007) Growth modes of 2-Ga microfossils. Paleobiology 33:382–396CrossRefGoogle Scholar
  4. Boal DH (2002) Mechanics of the cell. Cambridge University Press, CambridgeGoogle Scholar
  5. Boal DH, Forde CE (2010) UnpublishedGoogle Scholar
  6. Boal DH, Jun S (2010) UnpublishedGoogle Scholar
  7. Boal DH, Ng J (2010) Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology 36:555–572Google Scholar
  8. Boal DH, Rao M (1992) Topology changes in fluid membranes. Phys Rev A46:3037–3045Google Scholar
  9. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of Λ-phage DNA. Science 265:1599–1600CrossRefPubMedGoogle Scholar
  10. Cloud PE Jr (1965) Significance of the Gunflint (Precambrian) microflora. Science 148:27–35CrossRefPubMedGoogle Scholar
  11. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, OxfordGoogle Scholar
  12. Evans E, Rawicz W (1990) Entropy-driven tension and elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097CrossRefPubMedGoogle Scholar
  13. Fromhertz P (1983) Lipid-vesicle structure: size control by edge-active agents. Chem Phys Lett 94:259–266CrossRefGoogle Scholar
  14. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28c:693–703Google Scholar
  15. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleo 50:1040–1073Google Scholar
  16. Killander D, Zetterberg A (1965) A quantitative cytochemical investigation of the relationship between cell mass and initiation of DNA synthesis in mouse fibroblasts in vitro. Experimental Cell Research, 40:12–20Google Scholar
  17. Luisi PL (2006) The emergence of life: from chemical origins to synthetic biology. Cambridge University Press, CambridgeGoogle Scholar
  18. Needham D, Hochmuth RM (1989) Electromechanical permeabilization of lipid vesicles. Biophys J 55:1001–1009CrossRefPubMedGoogle Scholar
  19. Rasmussen B (2000) Filamentous microfossils in a 3.235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679CrossRefPubMedGoogle Scholar
  20. Schopf JW (1968) Microflora of the bitter springs formation, Late Precambrian, central Australia. J Paleo 42:651–688Google Scholar
  21. Schopf JW (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646CrossRefPubMedGoogle Scholar
  22. Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73CrossRefPubMedGoogle Scholar
  23. Walsh MM, Lowe DR (1985) Filamentous microfossils from the 3, 500 Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314:530–532CrossRefGoogle Scholar
  24. Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of PhysicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations