Skip to main content

Theoretical Approaches to Ribocell Modeling

  • Chapter
  • First Online:
The Minimal Cell

Abstract

The so-called Ribocell (ribozymes-based cell) is a theoretical cellular model that has been proposed some years ago as a possible minimal cell prototype. It consists in a self-replicating minimum RNA genome coupled with a self-reproducing lipid vesicle compartment. This model assumes the existence of two hypothetical ribozymes one able to catalyze the conversion of molecular precursors into lipids and the second one able to replicate RNA strands. Therefore, in an environment rich both of lipid precursors and activated nucleotides, the ribocell can self-reproduce if the genome self-replication and the compartment self-reproduction mechanisms are somehow synchronized. The aim of this contribution is to explore the feasibility of this model with in silico simulations using kinetic parameters available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course a cell can also die for not optimal external conditions.

  2. 2.

    The underlying assumption of the deterministic approach is that all vesicles have the same time behavior in average.

  3. 3.

    The system state density probability ℘(x, t) is defined so that the product ℘(x, t)dt gives the probability to find the system in the state x at the time interval [t, t + dt].

  4. 4.

    For further details on the Stochastic Kinetic Theory the reader can refer to the van Kampen’s or Gillepie’s books (van Kampen 1981; Gillespie 1992).

References

  • Ao P (2005) Metabolic network modelling: including stochastic effects. Comput Chem Engin 29:2297–2303

    Article  CAS  Google Scholar 

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    Article  CAS  PubMed  Google Scholar 

  • Christensen U (2007) Thermodynamic and kinetic characterization of duplex formation between 2’-O, 4’-C-Methylene-modified Oligoribonucleotides. DNA RNA Biosci Rep 27:327–333

    Article  CAS  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  • Gillespie DT (1992) Markov processes: an introduction for physical scientists. Academic Press, San Diego

    Google Scholar 

  • Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DT (2009) Deterministic limit of the stochastic chemical kinetics. J Phys Chem 113:1640–1644

    CAS  Google Scholar 

  • Lecca P (2007) Simulating the cellular passive transport of glucose using a time-dependent extension of Gillespie algorithm for stochastic pi-calculus. Int J Data Mim Bioinf 1:315–336

    Article  Google Scholar 

  • Li H, Cao Y, Petzold LR, Gillespie DT (2008) Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol Prog 24:56–61

    Article  PubMed  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Volfson D, Tsimring L, Hasty J (2004) Cellular growth and division in the Gillespie algorithm. Syst Biol 1:121–128

    Article  CAS  Google Scholar 

  • Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL (2003) Autopoiesis: a review and a reappraisal. Naturwissensch 90:49–59

    CAS  Google Scholar 

  • Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. PNAS 105:13351–13355

    Article  CAS  PubMed  Google Scholar 

  • Mansy SS, Schrum JP et al (2008) Template directed synthesis of a genetic polymer in a model protocell. Nature 454:122–126

    Article  CAS  PubMed  Google Scholar 

  • Mavelli F, Lerario M, Ruiz-Mirazo K (2008) ‘Environment’: a stochastic simulation platform to study protocell dynamics. In: Arabnia HR et al (eds) BIO-COMP’08 proceedings, vol II. CSREA Press, New York

    Google Scholar 

  • Mavelli F, Piotto S (2006) Stochastic simulations of homogeneous chemically reacting systems. J Mol Struct 771:55–64

    CAS  Google Scholar 

  • Mavelli F, Ruiz-Mirazo K (2007) Stochastic simulations of minimal self-reproducing cellular systems. Phil Trans Royal Soc B 362:1789–1802

    Article  CAS  Google Scholar 

  • Mavelli F, Ruiz-Mirazo K (2010) Environment: a computational platform to stochastically simulate self-replicating reacting vesicles. Phys Biol 7:036002

    Google Scholar 

  • Mavelli F, Stano P (2010) Kinetic models for autopoietic chemical systems: role of fluctuations in homeostatic regime. Phys Biol 7:16010

    Google Scholar 

  • McAdams HH, Arkin AP (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94:814–819

    Article  CAS  PubMed  Google Scholar 

  • McQuarry DA (1975) Probability theory and stochastic processes. In: Henderson D (ed) Physical chemistry, an advanced treatise XIB. Academic Press, New York

    Google Scholar 

  • Ruiz-Mirazo K, Mavelli F (2007) Simulation model for functionalized vesicles: lipid-peptide integration in minimal protocells. In: Almeida F (ed) Advances in artificial life. Springer, Berlin

    Google Scholar 

  • Ruiz-Mirazo K, Mavelli F (2008) On the way towards basic autonomous systems: stochastic simulations of minimal lipid-peptide cells. Biosystems 91:374–387

    Article  CAS  PubMed  Google Scholar 

  • Sacerdote MG, Szostak JW (2005) Semipermeable lipid bilayers exhibit diastereo-selectivity favoring ribose. PNAS 102:6004–6008

    Article  CAS  PubMed  Google Scholar 

  • Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci USA 102:2310–2315

    Google Scholar 

  • Stage-Zimmermann TK, Uhlenbeck OC (1998) Hammerhead ribozyme kinetics. RNA 4:875–889

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW, Bartel DP and Luisi PL (2001) Synthesizing life. Nature 409:387–390.

    Google Scholar 

  • Tsoi PY, Yang M (2002) Surface plasmon resonance study of human polymerase β binding to DNA. Biochem J 361:317–325

    Google Scholar 

  • Van Kampen NG (1981) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Mavelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Mavelli, F. (2011). Theoretical Approaches to Ribocell Modeling. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_14

Download citation

Publish with us

Policies and ethics