Skip to main content

Adaptive Power Control

  • Chapter
  • First Online:
  • 911 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

Cellular phone power amplifiers usually operate in strongly fluctuating environments. The output power varies over a wide range to compensate for fluctuations in propagation path loss. The collector load impedance varies due to fluctuations in antenna body-effects [14, 15] and it varies as a function of the transmitting frequency due to the narrow bandwidth of miniaturized antennas. In addition, the supply voltage changes due to charging and de-charging of the battery. At high output power and extreme operating conditions the power transistor suffers from avalanche, self-heating and distortion due to saturation. Usually, large margins are built-in, by design and technology, in order to prevent the transistor from avalanche breakdown, thermal run-away, and severe clipping. Inevitably, these large margins deteriorate RF performance and come with additional costs in packaging, chip area, and IC-technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To control mobile phone output power two different methods are commonly used. In high-efficiency GSM power amplifiers usually the amplifier gain is made variable by controlling the bias currents of the power transistor driver stages. The input power P IN to the power amplifier is kept constant by the transceiver.

    In highly linear EDGE and W-CDMA power amplifiers the gain is usually kept fixed in order to meet linearity requirements. Therefore, power control of phones in linear mode is done by changing the input power P IN of the amplifier by the transceiver.

References

  1. K.R. Boyle. The performance of GSM 900 antenna in the presence of people and phantoms, in IEEE International Conference on Antennas and Propagation, vol. 1, pp. 35–38, Mar 2003

    Google Scholar 

  2. G.F. Pedersen, K. Olesen, S.L. Larsen, Bodyloss for handheld phones, in 49th IEEE Vehicular Technology Conference Proceedings, vol. 2, pp. 1580–1584, May 1999

    Google Scholar 

  3. A. Scuderi, L. La Paglia, F. Carrara, G. Palmisano, A VSWR-protected silicon bipolar RF power amplifier with soft-slope power control. IEEE J. Solid-State Circuits 40(3), 611–621 (Mar 2005)

    Article  Google Scholar 

  4. M. Rickelt, H.M. Rein, E. Rose, Influence of impact-ionization-induced instabilities on the maximum usable output voltage of Si-bipolar transistors. IEEE Trans. Electron. Dev. 48(4), 774–783 (Apr 2001)

    Article  Google Scholar 

  5. M.G. Adlerstein, Thermal stability of emitter ballasted HBT’s. IEEE Trans. Electron Devices 45(8), 1653–1655 (Aug 1998)

    Article  Google Scholar 

  6. E. Kreyszig, Advanced engineering mathematics, 6th edn. (Wiley, New York, 1988), p. 588

    Google Scholar 

  7. D.M. Pozar, Microwave engineering (Addison-Wesley, New York, 1990), pp. 84–103

    Google Scholar 

  8. J.L. Min, J.J. Schrage, B.V. Uitgevery Nijgh, van Ditmar, Den Haag, Ontwerpen van analoge en digitale regelsystemen

    Google Scholar 

  9. L.-Y.V. Chen, R. Forse, D. Chase, R.A. York, Analog tunable matching network using integrated thin-film BST capacitors, in IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 261–264, June 2004

    Google Scholar 

  10. K. Buisman, L.C.N. de Vreede, L.E. Larson, M. Spirito, A. Aknoukh, T.L. M. Scholtes, L.K. Nanver, Distortion-free varactor diode topologies for RF adaptivity, in IEEE International Microwave Symposium Digest, pp. 157–160, June 2005

    Google Scholar 

  11. D. Qiao, D. Choi, Y. Zhao, D. Kelly, T. Hung, D. Kimball, M. Li, P. Asbeck, Antenna impedance mismatch measurement and correction for adaptive CDMA transceivers, in IEEE International Microwave Symposium Digest, pp. 783–786, June 2005

    Google Scholar 

  12. A. Chamseddine, J.W. Haslett, M. Okoniewski, CMOS silicon-on-sapphire RF tunable matching networks. EURASIP J. Wireless Commun. Netw. 2006, 1–11 (2006)

    Article  Google Scholar 

  13. J. Bonkowski, D. Kelly, Integration of triple-band GSM antenna switch module using SOI CMOS, in IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 511–514, June 2004

    Google Scholar 

  14. G.M. Rebeiz, RF MEMS theory design and technology (Wiley, Hoboken, NJ, 2003)

    Book  Google Scholar 

  15. V.K. Varadan, K.J. Vinoy, K.A. Jose, RF MEMS and their applications (Wiley, England, 2003)

    Google Scholar 

  16. F. Theunis, J. Bielen, M. de Jongh, P.V.E. Krusemann, A novel and efficient packaging technology for RF-MEMS devices, in IEEE Electronic Components and Technology Conference, pp. 1239–1245, May 2007

    Google Scholar 

  17. A. van Bezooijen, M.A. de Jongh, F. van Straten, R. Mahmoudi, A.H.M. van Roermund, Adaptive impedance-matching techniques for controlling L-networks. IEEE Trans. Circuits Syst. Part-1 57(2), 495–505 (2010)

    Article  Google Scholar 

  18. A. van Bezooijen, M. de Jongh, C. Chanlo, L. Ruijs, H.J. ten Dolle, P. Lok, F. van Straten, J. Sneep, R. Mahmoudi, A.H.M. van Roermund, RF-MEMS based adaptive antenna matching module, in IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 573–576, June 2007

    Google Scholar 

  19. M. Thompson, J.F. Fidler, Application of the genetic algorithm and simulated annealing to LC filter tuning. IEE Proc. Circuits Devices Syst. 148(4), 177–182 (Aug 2001)

    Article  MathSciNet  Google Scholar 

  20. M. Thompson, J.F. Fidler, PI-network design software, in Proceedings of the 3rd IEEE International Conference on Electronics, Circuits, and Systems, vol. 1, pp. 1–4, Oct 1996

    Google Scholar 

  21. M. Thompson, Application of multi objective evolutionary algorithms to analogue filter tuning, in Proceedings on 1st International Conference on Evolutionary Multi-Criterion Optimization, vol. 1993/2001 (Springer, Berlin), p. 546, 2001

    Google Scholar 

  22. M. Thompson, J.F. Fidler, Fast antenna tuning using transputer based simulated annealing. IEEE Electron. Lett. 36(7), 603–604 (Mar 2000)

    Article  Google Scholar 

  23. M. Mileusnic, P. Petrociv, J. Todorovic, Design and implementation of fast antenna tuners for HF radiosystems, in Proceedings of the International Conference on Information, Communications and Signal Processing, vol. 3, pp. 1722–1726, Sept 1997

    Google Scholar 

  24. Patent US 3.443.231, 1969

    Google Scholar 

  25. R.W. Herfst, Degradation of RF MEMS capacitive switches, Ph.D. thesis, University of Twente, The Netherlands, 2008

    Google Scholar 

  26. D.M. Pozar, Microwave engineering (Addison-Wesley, New York, June 1990), pp. 76–84

    Google Scholar 

  27. F. C. de Ronde, A precise and sensitive X-band reflecto-meter providing automatic full-band display of reflection coefficient, in IEEE Transactions on Microwave Theory and Techniques, pp. 435–440, July 1965

    Google Scholar 

  28. D. Qiao, T. Hung, F. Wang, P. Asbeck, Measurement of antenna load impedance for power amplifiers, in IEEE Topical Workshop on Power Amplifiers for Wireless Communications Technical Digest, Sept 2004

    Google Scholar 

  29. J.R. Moritz, Y. Sun, Frequency agile antenna tuning and matching, in IEE 8th International Conference on HF Radio Systems and Techniques, no. 474, pp. 169–174, July 2000

    Google Scholar 

  30. I. Yokoshima, RF Impedance measurements by voltage-current detection. IEEE Trans. Instrum. Meas. 42(2) (Apr 1993)

    Google Scholar 

  31. Commercially available software package from Agilent Technologies, http://www.home.agilent.com

  32. A. van Bezooijen, M.A. de Jongh, C. Chanlo, L.C.H. Ruijs, F. van Straten, R. Mahmoudi, A.H.M. van Roermund, A GSM/EDGE/WCDMA adaptive series-LC matching network using RF-MEMS switches. IEEE J. Solid-State Circuits 43(10), 2259–2268 (Oct 2008)

    Article  Google Scholar 

  33. J.T.M. van Beek, et al., High-Q integrated RF passives and micro-mechanical capacitors on silicon, in Proceedings BCTM 2003, pp. 147–150, Sept 2003

    Google Scholar 

  34. A.J.M. de Graauw, P.G. Steeneken, C. Chanlo, S. Pramm, A. van Bezooijen, H.K.J. ten Dolle, F. van Straten, P. Lok, MEMS-based reconfigurable multi-band BiCMOS power amplifier, in IEEE Proceedings BCTM 2006, pp. 17–20, Oct 2006

    Google Scholar 

  35. F. Meng, A. van Bezooijen, R. Mahmoudi, A mismatch detector for adaptive impedance matching, in Proceeding of the 36th European Microwave Conference, pp. 1457–1460, Sept 2006

    Google Scholar 

  36. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and design of analog integrated circuits (Wiley, Somerset, NJ, 2001), pp. 716–720

    Google Scholar 

  37. K.R. Boyle, Y. Yuan, L.P. Lighthart, Analysis of mobile phone antenna impedance variations with user proximity. IEEE Trans. Antennas Propag. 55(2), 364–372 (Feb 2007)

    Article  Google Scholar 

  38. P.G. Steeneken, ThGSM Rijks, J.T.M. van Beek, M.J.E. Ulenaers, J. de Coster, R. Puers, Dynamics and sqeeuze film gas damping of a capacitive RF MEMS switch. Inst. Phys. Publ. J. Micromech. Microeng. 15, 176–184 (Oct 2004)

    Article  Google Scholar 

  39. V. Jiménez, J. Pons, M. Domínquez, A. Bermejo, L. Castaner, H. Nieminen, V. Ermolov, Transient dynamics of a MEMS variable capacitor driven with a Dickson charge pump. Elsevier Sens. Actuators A 128, 89–97 (2006)

    Article  Google Scholar 

  40. Commercially available electro-magnetic simulation package from Sonnet Software Inc., http://www.sonnetusa.com

  41. T. Ranta, J. Ellä, H. Pohjonen, Antenna switch linearity requirements for GSM/WCDMA mobile phone front-ends, in European Conference on Wireless Technology Digest, pp. 23–26, Oct 2005

    Google Scholar 

  42. M. Innocent, P. Wambacq, S. Donnay, H.A.C. Tilmans, W. Sansen, H. De Man, An analytic volterra-series-based model for a MEMS variable capacitor. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(2), 124–131 (Feb 2003)

    Article  Google Scholar 

  43. E.L. Firrao, A.J. Annema, B. Nauta, An automatic antenna tuning system using only RF signal amplitudes. IEEE Trans. Circuits Syst. Express Briefs 55(9), 833–837 (Sept 2008)

    Article  Google Scholar 

  44. E.W.C. Neo, Y. Lin, X. Liu, L.C.N. de Vreede, L.E. Larson, M. Spirito, M.J. Pelk, K. Buisman, A. Akhnoekh, A. de Graauw, L.K. Nanver, Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks. IEEE J. Solid-State Circuits 41(9), 2106–2176 (Sept 2006)

    Article  Google Scholar 

  45. G. Leuzzi, C. Micheli, Variable-load constant efficiency power amplifier for mobile communications applications, in 33rd European Microwave Conference (Munich), pp. 375–377, Oct 2003

    Google Scholar 

  46. A. Tombak, A ferroelectric-capacitor-based tunable matching network for quad-band cellular power amplifiers. IEEE Trans. Microw. Theory Tech. 55(2), 370–375 (Feb 2007)

    Article  Google Scholar 

  47. P. Sjöblom, H. Sjöland, Measured CMOS switched high-quality capacitors in a reconfigurable matching network. IEEE Trans. Circuits Syst. Expr. Brief. 54(10), 858–862 (Oct 2007)

    Article  Google Scholar 

  48. J. Fu, A. Mortazawi, Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network. IEEE Trans. Microw. Theory Tech. 56(12), 3239–3244 (Dec 2008)

    Article  Google Scholar 

  49. A. van Bezooijen, F. van Straten, R. Mahmoudi, A.H.M. van Roermund, Power amplifier protection by adaptive output power control. IEEE J. Solid-State Circuits 42(9), 1834–1841 (Sept 2007)

    Article  Google Scholar 

  50. T. Vanhoucke, G.A.M. Hurkx, Unified electro-thermal stability criterion for bipolar transistors, in Proceedings BCTM, pp. 37–40, 2005

    Google Scholar 

  51. C.P. Lee, F.H.F. Chau, W. Ma, N.L. Wang, The safe operating area of GaAs-based heterojunction bipolar transistors. IEEE Trans. Electron Devices 53(11), 2681–2688 (Nov 2006)

    Article  Google Scholar 

  52. A. Inoue et al., The maximum operating region in SiGE HBTs for RF power amplifiers, in IEEE MTT-S Digest, pp. 1023–1026, 2002

    Google Scholar 

  53. D.L. Harama, Current status and future trends of SiGe BiCMOS technology. IEEE Trans. Electron Devices 48(11), 2575–2594 (Nov 2001)

    Article  Google Scholar 

  54. K. Yamamoto et al., A 3.2V Operation single-chip dual band AlGaAs/GaAs HBT MMIC power amplifier with active feedback circuit technique. IEEE J. Solid-State Circuits 35(8), 1109–1120S (Aug 2000)

    Article  Google Scholar 

  55. G. van der Bent, M. van Wannum, A.P. de Hek, M.W. van der Graaf, F.E. van Vliet, Protection circuit for high power amplifiers operating under mismatch conditions, in IEEE Proceeding of the 2nd European Microwave Integrated Circuits Conference, pp. 158–161, Oct 2007

    Google Scholar 

  56. L.C.M. van den Oever, R.M. Heeres, H.F.F. Jos, Linear efficiency load-pull measurements on GaAs HBT versus Si BJT for EDGE and OFDM modulation, in IEEE Proceedings BCTM, pp. 9–12, Oct 2006

    Google Scholar 

  57. A.J.M. de Graauw, A. van Bezooijen, C. Chanlo, A. den Dekker, J. Dijkhuis, S. Pramm, H.J. ten Dolle, Miniaturized quad-band front-end module for GSM using Si BiCMOS and passive integration technologies, in IEEE Proceedings BCTM 2006, pp. 21–24, Oct 2006

    Google Scholar 

  58. G. Gao, M. Selim, H. Morkoç, D.L. Blackburn, Emitter ballasting resistor design for, and current handling capability of AlGaAs/GaAs power heterojunction bipolar transistors. IEEE Trans. Electron Devices 38(2), 185–196 (Feb 1991)

    Article  Google Scholar 

  59. W. Liu, S. Nelson, D.G. Hill, A. Khatibzadeh, Current gain collapse in microwave multifinger heterojunction bipolar transistors operating at very high power densities. IEEE Trans. Electron Devices 40(11), 1917–1927 (Nov 1993)

    Article  Google Scholar 

  60. S.C. Cripps, RF power amplifiers for wireless communications (Artech House, Norwood, MA, 1999)

    Google Scholar 

  61. D.M. Pozar, Microwave engineering (Addison-Wesley, New York, June 1990)

    Google Scholar 

  62. W. Bakalski, M. Zannoth, M. Asam, W. Thomann, B. Kapfelsperger, P. Pfann, J. Berkner, C. Hepp, A. Stellenpohl, W. Osterreicher, E. Rampf, A load-insensitive quad-band GSM/EDGE SiGeC-bipolar power amplifier with a highly efficient low power mode, in IEEE Radio and Wireless Symposium Digest, pp. 203–206, Jan 2008

    Google Scholar 

  63. G. Berretta, D. Cristaudo, S. Scaccianoce, A balanced cdma2000 SiGe HBY load insensitive power amplifier, in IEEE Radio and Wireless Symposium Digest, pp. 523–526, Jan 2006

    Google Scholar 

  64. B.H. Krabbenborg, Modelling and simulations of electrothermal interaction in bipolar transistors (Proefschrift Technische Universiteit Twente, Enschede, 1994)

    Google Scholar 

  65. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and design of analog integrated circuits (Wiley, New York, 2001), pp. 20–23

    Google Scholar 

  66. H. Veenstra, G.A.M. Hurkx, D. van Goor, H. Brekelmans, J.R. Long, Analysis and design of bias circuits tolerating output voltages above BVCEO. IEEE J. Solid-State Circuits 40, 2008–2018 (Oct 2005)

    Article  Google Scholar 

  67. A. van Bezooijen, F. van Straten, R. Mahmoudi, A.H.M. van Roermund, Avalanche breakdown protection by adaptive output power control, in IEEE RSW Proceedings, pp. 519–522, Jan 2006

    Google Scholar 

  68. A. van Bezooijen, F. van Straten, R. Mahmoudi, A.H.M. van Roermund, Over-temperature protection by adaptive output power control, in IEEE Proceedings of the 36th European Microwave Conference, pp. 1645–1647, Sept 2006

    Google Scholar 

  69. L. Ruijs, A. van Bezooijen, R. Mahmoudi, A. H. M. van Roermund, Novel voltage limiting concept for avalanche breakdown protection, in IEEE MTT-S International Microwave Symposium Digest, pp. 1842–1845, June 2006

    Google Scholar 

  70. P. Deixler et al., QUBiC4plus: A cost-effective BiCMOS manufacturing technology with elite passive enhancements optimized for silicon-based RF-system-in-package environment, in Proceedings BCTM 2005, pp. 272–275, Oct 2005

    Google Scholar 

  71. M.C. Jeruchim, Simulations of communication systems: modeling, methodology, and techniques, 2nd edn. (Kluwer/Plenum Publishers, New York, 2000), pp. 434–435

    Google Scholar 

  72. P. Baltus, A. van Bezooijen, Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module, in 10th Workshop on Advances in Analogue Circuit Design, AACD2001, Noordwijk, The Netherlands, Apr 2001

    Google Scholar 

  73. A. van Bezooijen, D. Prikhodko, Biasing circuits for voltage controlled GSM power amplifiers, in IEEE Proceedings of the 33th European Microwave Conference, pp. 277–280, Oct 2003

    Google Scholar 

  74. A. van Bezooijen, C. Chanlo, R. Mahmoudi, A.H.M. van Roermund, Adaptively preserving power amplifier linearity under antenna mismatch, in IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1515–1518, June 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André van Bezooijen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Bezooijen, A., Mahmoudi, R., van Roermund, A. (2011). Adaptive Power Control. In: Adaptive RF Front-Ends for Hand-held Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9935-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9935-8_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9934-1

  • Online ISBN: 978-90-481-9935-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics