Skip to main content

Terraforming Mars: A Review of Concepts

  • Chapter
  • First Online:
Engineering Earth

Abstract

The concept of modifying the environment of another planet, so that it can support terrestrial life, is known as terraforming. As a speculative thought experiment in planetary engineering, it has been slowly gaining in respectability and, over the past 40 years, has amassed a considerable body of published work. In this paper, the progress of research into the terraforming of the planet Mars is briefly reviewed. While such an undertaking does not appear technologically impossible, whether it will actually happen is an unanswerable question. However, the control space for thought experimentation that terraforming provides is of use in planetological research, environmental ethics, and education. The subject is therefore relevant to the present day, as well as to a possible future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 699.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Averner, M. M., & MacElroy, R. D. (1976). On the habitability of Mars: An approach to planetary ecosynthesis. Washington, DC: NASA SP-414.

    Google Scholar 

  • Baker, V. R., Strom, R. G., Gulick, V. C., Kargel, J. S., Komatsu, G., & Kale, V. S. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589.

    Article  Google Scholar 

  • Birch, P. (1992). Terraforming Mars quickly, Journal of the British Interplanetary Society, 45, 331.

    Google Scholar 

  • Brown, L. (1993). The new shorter Oxford English Dictionary (Vol. 2 (N-Z)). Oxford: Clarendon Press.

    Google Scholar 

  • Burns, J. A., & Harwit, M. (1973). Towards a more habitable Mars -or-the coming Martian spring. Icarus, 19, 126.

    Article  Google Scholar 

  • Clifford, S. M. (1993). A model for the hydrological and climatic behavior of water on Mars. Journal of Geophysical Research, 98, 10973.

    Article  Google Scholar 

  • Clifford, S. M., & Parker, T. J. (2001). The evolution of the Martian hydrosphere: Implications of the fate of a primordial ocean and the current state of the Northern Plains. Icarus, 154, 40.

    Article  Google Scholar 

  • Eckart, P. (1996). Spaceflight life support and biospherics. Dordrecht: Kluwer.

    Google Scholar 

  • Fogg, M. J. (1989). The creation of an artificial dense Martian atmosphere: A major obstacle to the terraforming of Mars. Journal of the British Interplanetary Society, 42, 577.

    Google Scholar 

  • Fogg, M. J. (1992). A synergic approach to terraforming Mars. Journal of the British Interplanetary Society, 45, 315.

    Google Scholar 

  • Fogg, M. J. (1993a). Dynamics of a terraformed Martian biosphere. Journal of the British Interplanetary Society, 46, 293.

    Google Scholar 

  • Fogg, M. J. (1993b). Terraforming: A review for environmentalists. The Environmentalist, 13, 7.

    Article  Google Scholar 

  • Fogg, M. J. (1993c). The ethical dimensions of space settlement. Space Policy, 16, 205.

    Article  Google Scholar 

  • Fogg, M. J. (1995a). Terraforming: Engineering planetary environments. Warrendale, PA: SAE International.

    Google Scholar 

  • Fogg, M. J. (1995b). Exploration of the future habitability of Mars. Journal of the British Interplanetary Society, 48, 301.

    Google Scholar 

  • Fogg, M. J. (1995c). Terraforming Mars: Conceptual solutions to the problem of plant growth in low concentrations of oxygen. Journal of the British Interplanetary Society, 48, 427.

    Google Scholar 

  • Fogg, M. J. (1999). Artesian basins on Mars: Implications for life-search, settlement and terraforming. In J. A. Hiscox (Ed.), The search for life on Mars (pp. 66–72). London: British Interplanetary Society.

    Google Scholar 

  • Friedmann, E. I., Hua, M., & Ocampo-Friedmann, R. (1993). Terraforming Mars: Dissolution of carbonate rocks by cyanobacteria. Journal of the British Interplanetary Society, 46, 291.

    Google Scholar 

  • Gerstell, M. F., Francisco, J. F., Yung, Y. L., Boxe, C., & Aaltonee, E. T. (2001). Keeping Mars warm with new super-greenhouse gases. Proceedings, National Academy of Science, 98, 2154.

    Article  Google Scholar 

  • Graham, J. M. (2004). The biological terraforming of Mars: Planetary ecosynthesis as ecological succession on a global scale. Astrobiology, 4, 168.

    Article  Google Scholar 

  • Haynes, R. H. (1990). Ecce ecopoiesis: Playing God on Mars. In D. MacNiven (Ed.), Moral expertise (pp. 161–183). London and New York: Routledge.

    Google Scholar 

  • Haynes, R. H., & McKay, C. P. (1992). The implantation of life on Mars: Feasibility and motivation, Advances in Space Research, 12(4), 133.

    Article  Google Scholar 

  • Hiscox, J. A., & Thomas, D. J. (1995). Genetic modification and selection of micro-organisms for growth on Mars. Journal of the British Interplanetary Society, 48, 419.

    Google Scholar 

  • Johnson, R. D., & Holbrow, C. (1977). Space settlements: A design study. Washington, DC: NASA SP-413.

    Google Scholar 

  • Lovelock, J. E., & Allaby, M. (1984). The greening of Mars. New York: Warner Brothers.

    Google Scholar 

  • MacNiven, D. (1995). Environmental ethics and planetary engineering. Journal of the British Interplanetary Society, 48, 441.

    Google Scholar 

  • Marinova, M. M., McKay, C. P., & Hashimoto, H. (2005). Radiative-convective model of warming Mars with artificial greenhouse gases. Journal of Geophysical Research, 110, E03002. doi:10.1029/2004JE002306.

    Article  Google Scholar 

  • McInnes, C. R. (2002). Non-Keplerian orbits for Mars solar reflectors. Journal of the British Interplanetary Society, 55, 78.

    Google Scholar 

  • McKay, C. P. (1982). Terraforming Mars. Journal of the British Interplanetary Society, 35, 427.

    Google Scholar 

  • McKay, C. P. (1990). Does Mars have rights? An approach to the environmental ethics of planetary engineering, In D. MacNiven (Ed.), Moral expertise (pp. 184–197). London and New York: Routledge.

    Google Scholar 

  • McKay, C. P., & Marinova, M. M. (2001). The physics, biology, and environmental ethics of making Mars habitable. Astrobiology, 1, 89.

    Article  Google Scholar 

  • McKay, C. P., Toon, O. B., & Kasting, J. F. (1991). Making Mars habitable. Nature, 352, 489.

    Article  Google Scholar 

  • National Commission on Space. (1986). Pioneering the space frontier. New York: Bantam Books.

    Google Scholar 

  • Oberg, J. E. (1981). New earths. New York: New American Library.

    Google Scholar 

  • O'Neill, G. K. (1977). The high frontier. London: Jonathan Cape Ltd.

    Google Scholar 

  • Parker, T. J. (2008). Martian outflow channels and ocean hypothesis, LPI, 39.2496P (2008).

    Google Scholar 

  • Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I., & Richards, M. A. (2007). Evidence for an ancient Martian ocean in the topography of deformed shorelines, Nature, 447, 840.

    Article  Google Scholar 

  • Pollack, J. B., Kasting, J. F., Richardson, S. M., & Poliakoff, K. (1991). The case for a wet, warm climate on early Mars. Icarus, 94, 1.

    Article  Google Scholar 

  • Sagan, C. (1973). Planetary engineering on Mars. Icarus, 20, 513.

    Article  Google Scholar 

  • Sagan, C., Toon, O. B., & Gierasch, P. J. (1973). Climatic change on Mars. Science, 181, 1045.

    Article  Google Scholar 

  • Schuerger, A. C., & Nicholson, W. L. (2006). Interactive effects of hypobaria, low temperature, and CO2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated Martian conditions, Icarus, 185, 143.

    Article  Google Scholar 

  • Titus, T. N., Kieffer, H. H., & Christensen, P. R. (2003). Exposed water ice discovered near the South Pole of Mars. Science, 299, 1048.

    Article  Google Scholar 

  • Turner, F. (1990). Life on Mars, Cultivating a planet–and ourselves, Harper's Magazine, 279(1671), 33.

    Google Scholar 

  • Turner, F. (1996). Worlds without ends. Reason, 28(2), 36.

    Google Scholar 

  • Williamson, J., writing as Stewart, W. (1942). Collision orbit. Astounding Science Fiction, 39(5), 80.

    Google Scholar 

  • Zubrin, R., & McKay, C. P. (1997). Technological requirements for terraforming Mars. Journal of the British Interplanetary Society, 50, 83.

    Google Scholar 

  • Zubrin, R. (1995). The economic viability of Mars colonization. Journal of the British Interplanetary Society, 48, 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn J. Fogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fogg, M.J. (2011). Terraforming Mars: A Review of Concepts. In: Brunn, S. (eds) Engineering Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9920-4_124

Download citation

Publish with us

Policies and ethics