Skip to main content

Abstract

In keeping with the theme of this volume, the present article commemorates the 50 years of Hutchinson’s (Am Nat 93:145–159, 1959) famous publication on the ‘very general question of animal diversity’, which obviously leads to the more important question regarding the driving forces of biodiversity and their limitation in various habitats. The study of phytoplankton in large lakes is a challenging task which requires the use of a wide variety of techniques to capture the range of spatial and temporal variations. The analysis of marker pigments may provide an adequate tool for phytoplankton surveys in large water bodies, thanks to automated analysis for processing numerous individual samples, and by achieving sufficient taxonomic resolution for ecological studies. Chlorophylls and carotenoids were analysed by HPLC in water column samples of Lake Tanganyika from 2002 through 2006, at two study sites, off Kigoma (north basin) and off Mpulungu (south basin). Using the CHEMTAX software for calculating contributions of the main algal groups to chlorophyll a, variations of phytoplankton composition and biomass were determined. We also investigated selected samples according to standard taxonomic techniques for elucidating the dominant species composition. Most of the phytoplankton biomass was located in the 0–40 m layer, with maxima at 0 or 20 m, and more rarely at 40 m. Deep chlorophyll maxima (DCM) and surface ‘blooms’ were occasionally observed. The phytoplankton assemblage was essentially dominated by chlorophytes and cyanobacteria, with diatoms developing mainly in the dry season. The dominant cyanobacteria were very small unicells (mostly Synechococcus), which were much more abundant in the southern basin, whereas green algae dominated on average at the northern site. A canonical correspondence analysis (CCA) including the main limnological variables, dissolved nutrients and zooplankton abundance was run to explore environment–phytoplankton relations. The CCA points to physical factors, site and season as key determinants of the phytoplankton assemblage, but also indicates a significant role, depending on the studied site, of calanoid copepods and of nauplii stages. Our data suggest that the factors allowing coexistence of several phytoplankton taxa in the pelagic zone of Lake Tanganyika are likely differential vertical distribution in the water column, which allows spatial partitioning of light and nutrients, and temporal variability (occurring at time scales preventing long-term dominance by a single taxon), along with effects of predation by grazers.

Guest editors: L. Naselli-Flores & G. Rossetti / Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • APHA, 2005. Standard methods for the examination of water and wastewater, 21st ed. Eaton, A. D., Clesceri, L. S., E. W. Rice, & A. E. Greenberg (eds), American Public Health Association, New York.

    Google Scholar 

  • Bergamino, N., S. Horion, S. Stenuite, Y. Cornet, S. Loiselle, P.-D. Plisnier & J.-P. Descy, 2010. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sensing of Environment. 114: 772–780.

    Google Scholar 

  • Burgis, M. J., 1984. An estimate of zooplankton biomass for Lake Tanganyika. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22: 1199–1203.

    Google Scholar 

  • Cocquyt, C., 1999. Seasonal dynamics of diatoms in the littoral zone of Lake Tanganyika, Northern Basin. Archiv für Hydrobiologie, Supplement, Algological Studies 92: 73–85.

    Google Scholar 

  • Cocquyt, C., 2000. Biogeography and species diversity of diatoms in the northern basin of Lake Tanganyika. Advances in Ecological Research 31: 126–150.

    Article  Google Scholar 

  • Cocquyt, C. & W. Vyverman, 2005. Phytoplankton in Lake Tanganyika: a comparison of community composition and biomass off Kigoma with previous studies 27 years ago. Journal of Great Lakes Research 31: 535–546.

    Article  Google Scholar 

  • Cocquyt, C., A. Caljon & W. Vyverman, 1991. Seasonal and spatial aspects of phytoplankton along the north-eastern coast of Lake Tanganyika. Annales de Limnologie 27: 215–225.

    Article  Google Scholar 

  • Coulter, G. W. (ed.), 1991. Lake Tanganyika and Its Life. Oxford University Press, London: 354 pp.

    Google Scholar 

  • Descy, J.-P., M.-A. Hardy, S. Stenuite, S. Pirlot, B. Leporcq, I. Kimirei, B. Sekadende, S. R. Mwaitega & D. Sinyenza, 2005. Phytoplankton pigments and community composition in Lake Tanganyika. Freshwater Biology 50: 668–684.

    Article  CAS  Google Scholar 

  • Falkowski, P. G. & J. A. Raven, 2007. Aquatic Photosynthesis. Princeton University Press, New Jersey: 484 pp.

    Google Scholar 

  • Fietz, S. & A. Nicklisch, 2004. An HPLC analysis of the summer phytoplankton assemblage in Lake Baikal. Freshwater Biology 49: 332–345.

    Article  Google Scholar 

  • Fietz, S., G. Kobanova, L. Izmest’eva & A. Nicklisch, 2005. Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal. Journal of Plankton Research 27: 793–810.

    Article  CAS  Google Scholar 

  • Finlay, B. J. & G. F. Esteban, 2001. Exploring Leeuwenhoek’s legacy: the abundance and diversity of protozoa. International Microbiology 4: 125–133.

    CAS  PubMed  Google Scholar 

  • Hecky, R. E. & E. J. Fee, 1981. Primary production and rates of algal growth in Lake Tanganyika. Limnology and Oceanography 26: 532–547.

    Article  Google Scholar 

  • Hecky, R. E. & H. J. Kling, 1981. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnology and Oceanography 26: 548–564.

    Article  Google Scholar 

  • Hecky, R. E. & H. J. Kling, 1987. Phytoplankton ecology of the great lakes in the rift valleys of Central Africa. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie 25: 197–228.

    Google Scholar 

  • Horion S., N. Bergamino, S. Stenuite, J.-P. Descy, P.-D. Plisnier, S. A. Loiselle & Y. Cornet (in press). Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sensing of Environment. 114: 781–791.

    Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93: 145–159.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. American Naturalist 95: 137–145.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology. Vol. II. Introduction to Lake Biology and the Limnoplankton. Wiley, New York: 1048 pp.

    Google Scholar 

  • Jeffrey, S. W., R. F. C Mantoura & S. W. Wright, 1997. Phytoplankton Pigments in Oceanography. SCOR—UNESCO, Paris: 661 pp.

    Google Scholar 

  • Kilham, S. S. & P. Kilham, 1990. Endless summer: internal loading processes dominate nutrient cycling in tropical lakes. Freshwater Biology 23: 379–389.

    Article  Google Scholar 

  • Kurki, H., I. Vuorinen, E. Bosma & D. Bwebwa, 1999. Spatial and temporal changes in copepod zooplankton communities of Lake Tanganyika. Hydrobiologia 407: 105–114.

    Article  Google Scholar 

  • Langenberg, V., L. Mwape, K. Thsibangu, J. M. Tumba, A. A. Koelmans, R. Roijackers, K. Salonen, J. Sarvala & H. Mölsä, 2002. Comparison of thermal stratification, light attenuation, and chlorophyll-a dynamics between the ends of Lake Tanganyika. Aquatic Ecosystem Health and Management 5: 255–265.

    Article  CAS  Google Scholar 

  • Mackey, M. D., D. J. Mackey, H. W. Higgins & S. W. Wright, 1996. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144: 265–283.

    Article  CAS  Google Scholar 

  • Naithani, J., E. Deleersnijder & P.-D. Plisnier, 2002. Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters 29: 2093–2096.

    Article  Google Scholar 

  • Naithani, J., E. Deleersnijder & P.-D. Plisnier, 2003. Analysis of wind-induced thermocline oscillations of Lake Tanganyika. Environmental Fluid Mechanics 3: 23–39.

    Article  Google Scholar 

  • Pirlot, S., J.-P. Descy & P. Servais, 2006. Corrigendum: correction of biomass estimates for heterotrophic micro-organisms in Lake Tanganyika. Freshwater Biology 51: 984–985.

    Google Scholar 

  • Plisnier, P.-D. & E. J. Coenen, 2001. Pulsed and dampened annual limnological fluctuations in Lake Tanganyika. In Munawar, M. H. & R. E. Hecky (eds), The Great Lakes of the World (GLOW): Food-Web, Health and Integrity. Backhuys, Leiden: 83–96.

    Google Scholar 

  • Plisnier, P. D., D. Chitamwebwa, L. Mwape, K. Tshibangu, V. Langenberg & E. J. Coenen, 1999. Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407: 45–58.

    Article  CAS  Google Scholar 

  • Plisnier, P.-D., H. Mgana, I. Kimirei, A. Chande, L. Makasa, J. Chimanga, F. Zulu, C. Cocquyt, S. Horion, N. Bergamino, J. Naithani, E. Deleersnijder, L. André, J.-P. Descy & Y. Cornet, 2009. Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika. Hydrobiologia 625: 117–134.

    Article  Google Scholar 

  • Raven, J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. In Platt, T. & W. K. W. Li (eds), Photosynthetic Picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences, Vol. 214: 1–70.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.), Excellence in Ecology, Vol. 9. Ecology Institute, Oldendorf/Luhe: 371 pp.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, New York: 535 pp.

    Book  Google Scholar 

  • Salonen, K., J. Sarvala, M. Järvinen, V. Langenberg, M. Nuottajärvi, K. Vuorio & D. B. R. Chitamwebwa, 1999. Phytoplankton in Lake Tanganyika—vertical and horizontal distribution of in vivo fluorescence. Hydrobiologia 407: 89–103.

    Article  Google Scholar 

  • Sarmento, H. & J.-P. Descy, 2008. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. Journal of Applied Phycology 20: 1001–1011.

    Article  Google Scholar 

  • Sarmento, H., M. Isumbisho & J.-P. Descy, 2006. Phytoplankton ecology of Lake Kivu (Eastern Africa). Journal of Plankton Research 28: 815–829.

    Article  CAS  Google Scholar 

  • Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol & J.-P. Descy, 2008. Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwater Biology 53: 756–771.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.

    Article  Google Scholar 

  • Simpson, J. H., P. B. Tett, M. L. Argoteespinoza, A. Edwards, K. J. Jones & G. Savidge, 1982. Mixing and phytoplankton growth around an island in a stratified sea. Continental Shelf Research 1: 15–31.

    Article  Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhasz-Nagy, 1993. Hutchinson’s heritage: the diversity–disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Spigel, R. H. & G. W. Coulter, 1996. Comparison of hydrology and physical limnology of the East African Great Lakes: Tanganyika, Malawi, Kivu and Turkana (with reference to some North American Great Lakes). In Johnson, T. C. & E. O. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon & Breach Publication, Amsterdam: 103–139.

    Google Scholar 

  • Stenuite, S., 2009. Le picoplancton du Lac Tanganyika : nature, biomasse et production. PhD thesis, University of Namur, Belgium: 326 pp.

    Google Scholar 

  • Stenuite, S., S. Pirlot, M.-A. Hardy, H. Sarmento, A.-L. Tarbe, B. Leporcq & J.-P. Descy, 2007. Phytoplankton production and growth rate in Lake Tanganyika: evidence of a decline in primary productivity in recent decades. Freshwater Biology 52: 2226–2239.

    Article  CAS  Google Scholar 

  • Stenuite, S., A.-L. Tarbe, H. Sarmento, F. Unrein, S. Pirlot, D. Sinyinza, S. Thill, M. Lecomte, B. Leporcq, J. M. Gasol & J.-P. Descy, 2009. Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. Journal of Plankton Research 31: 1531–1544.

    Article  CAS  Google Scholar 

  • Stoyneva, M., G. Gärtner, C. Cocquyt & W. Vyverman, 2005. Closteriopsis petkovii n. sp.—a new green alga from Lake Tanganyika. Phyton 45: 237–247.

    Google Scholar 

  • Stoyneva, M., G. Gärtner, C. Cocquyt & W. Vyverman, 2006. Eremosphaera tanganyikae sp. nov. (Trebouxiophyceae), a new species from Lake Tanganyika. Belgian Journal of Botany 139: 92–102.

    Google Scholar 

  • Stoyneva, M., J.-P. Descy & W. Vyverman, 2007a. Green algae in Lake Tanganyika: is morphological variation a response to seasonal changes? Hydrobiologia 578: 7–16.

    Article  Google Scholar 

  • Stoyneva, M., C. Cocquyt, G. Gärtner & W. Vyverman, 2007b. Oocystis lacustris Chod. (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa). Linzer Biologischen Beiträge 39: 571–632.

    Google Scholar 

  • Stoyneva, M., E. Ingolić, W. Kofler & W. Vyverman, 2008. Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa). Biologia 63: 799–805.

    Article  Google Scholar 

  • Stoyneva, M., G. Gärtner & W. Vyverman, 2009. Gloeothece hindakii (Cyanoprokaryota, Synechococcaceae)—a new planktonic species from Lake Tanganyika (Africa). Phyton 48: 199–209.

    Google Scholar 

  • Tarbe, A.-L., 2010. Les protistes, acteurs-clés du réseau trophique pélagique au Lac Tanganyika. PhD. thesis, University of Namur, Belgium: 304 pp.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY, USA: 500 pp.

    Google Scholar 

  • Vuorio, K., M. Nuottajärvi, K. Salonen & J. Sarvala, 2003. Spatial distribution of phytoplankton and picocyanobacteria in Lake Tanganyika in March and April 1998. Aquatic Ecosystem Health and Management 6: 263–278.

    Article  Google Scholar 

  • Weisse, T., 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Advances in Microbial Ecology 13: 327–370.

    Google Scholar 

  • Wilson, J. B., 1990. Mechanisms of species coexistence—12 explanations for Hutchinson paradox of the plankton—evidence from New-Zealand plant-communities. New Zealand Journal of Ecology 13: 17–42.

    Google Scholar 

  • Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjornland, D. Repeta & N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids in marine phytoplankton. Marine Ecology Progress Series 77: 183–196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Descy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Descy, JP. et al. (2010). Drivers of phytoplankton diversity in Lake Tanganyika. In: Naselli-Flores, L., Rossetti, G. (eds) Fifty years after the ‘‘Homage to Santa Rosalia’’: Old and new paradigms on biodiversity in aquatic ecosystems. Developments in Hydrobiology 213, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9908-2_4

Download citation

Publish with us

Policies and ethics