Skip to main content

Conditions for Innovation in Geothermal Power Generation

  • Chapter
  • First Online:
  • 1413 Accesses

Abstract

The innovation process of generating electricity from deep geothermal heat is still in its early stages – the current phase is one of preliminary research. The state of this technology today is comparable to that of photovoltaics in the 1970s. The number of actors engaged in this field is small, comprising primarily of non-university research institutes, drilling technology companies, as well as municipalities, municipal utilities, power companies and district heating companies. It is mainly research actors, dedicated individuals and research funding that act as a motor for advancing the relevant pilot and demonstration plants.

So far there has been little practical experience in the harnessing of deep geothermal heat for electricity generation. The physical potential of geothermal power is extremely promising, yet tapping this source of energy is accompanied by high exploration risks and costly investments. There are no commercially operated plants to date, so future experience with the plants currently being commissioned will be key to the further development.

Characteristic of geothermal power is the low public awareness of this source of energy. So far there has hardly been any competition with other renewable energies. However, conflicts may arise due to the electricity sector’s recent interest in deeper aquifers and safeguarding mining rights, which it may need to store captured CO2. Acceptance problems may occur in the context of deep geothermal projects when geothermal drilling produces seismic responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Financial Times estimates the electricity generating potential of geothermal energy worldwide at one billion MWh, which amounts to ten times the world’s total energy consumption (Janzing 2004a, 62). There is also great potential in Germany: in theory, the heat reserves deep below the Upper Rhine Valley are sufficient to cover all of Germany’s energy needs for over 1,000 years (Janzing 2004b, 72–73).

  2. 2.

    www.izt.de/pdfs/SKEP/SKEP_AP5_Technologiereport.pdf (accessed July 24, 2009).

  3. 3.

    There are currently some two dozen geothermal plants in Germany with heat outputs ranging from 100 kW to 20 MW. Thermal water generally has a high salt content. Consequently, the water transported from deep within the earth cannot be directly fed into the heating circuit. It is conducted via corrosion-resistant pipes through a heat exchanger, where it releases its energy to the heating circuit. The water is subsequently pumped back into the bedrock via a second borehole.

  4. 4.

    The so-called “Deep Geothermal Group” coined this umbrella term. Work is still in process to produce a conclusive definition (see PK query Tiefe Geothermie 2007).

  5. 5.

    Figures published in the relevant literature vary greatly.

  6. 6.

    Hot springs played an integral role in the societies of the ancient Romans, Greeks, Mexicans, Japanese, Turks and the Maoris in New Zealand. In addition to their warmth, they were also ascribed healing powers.

  7. 7.

    www1.eere.energy.gov/geothermal/history.html (accessed July 24, 2009).

  8. 8.

    www.geothermie.de/egec_geothernet/menu/frameset.htm (accessed July 24, 2009).

  9. 9.

    Clarification of Fig. 6.3: tapping geothermal energy only made sense in conjunction with a heating network. However, in the mid-1980s, Helmut Kohl’s new government also ceased to provide support for cogeneration of heat and power and district heating networks. Funding for the geothermal project in Bruchsal (which was relaunched in 2008) was discontinued primarily for economic reasons – an American settlement had opted for a gas-powered heat supply system (see Section 6.2.2.4). An insufficient flow of knowledge then also led to Germany’s withdrawal from the two projects abroad. This explains the sharp decline in funding in the mid-1980s. After his appointment as head of the division responsible for renewable energy within the Federal Research Ministry in 1985, Eisenbeiß endeavored to at least resume research into HDR technology in Germany. The German–French project in Soultz-sous-Forêts enabled implementation of this goal from 1987. However, in the 1990s geothermal energy was seen to hold little promise in view of the geological conditions in Germany (Eisenbeiß 2009, pers. comm.; see Section 6.2.1.5). This situation did not change until a new government came to power in 1998.

  10. 10.

    The Federal Research Ministry and later the Federal Ministry for the Environment supported the project in Bad Urach.

  11. 11.

    Under the direction of the Federal Institute for Geosciences and Natural Resources, the HDR project in Falkenberg (1978–1986) conducted basic studies on hydraulic stimulation in crystalline rock.

  12. 12.

    Cf. Geothermische Energie (2002, 7). The Federal Future Investment Program was a federal economic stimulus package to improve economic stability and employment. It was financed by the sale of UMTS licenses.

  13. 13.

    The most significant projects were: Neustadt-Glewe, Neuruppin, Pritzwalk, Stralsund, Schwerin, Velten, Rostock, Pasewalk, Ludwigslust, Neustrelitz, Nauen, Hohennauen.

  14. 14.

    The Geothermie Neubrandenburg GmbH can provide access to all documentation.

  15. 15.

    Today’s NordLeder GmbH is part of the Möllergroup.

  16. 16.

    The company’s shareholders are the town of Neustadt-Glewe (47%), WEMAG AG Schwerin (45%) and GTN Geothermie Neubrandenburg GmbH (8%). In GDR times VEB Geothermie Neubrandenburg operated the plant.

  17. 17.

    Karl Walter Hirche was Minister for Economics, SMEs and Technology from 1990 to 1994 in the state of Brandenburg.

  18. 18.

    An annual trade fair and showcase for industrial technology that takes place in Hanover.

  19. 19.

    The association was initially called the Geothermische Vereinigung e.V. (GtV) but was later renamed the Geothermal Association – Federal Association of Geothermal Energy (Geothermische Vereinigung – Bundesverband Geothermie e. V. – GtV-BV) (see Section 6.2.2.6).

  20. 20.

    See http://www.gfz-potsdam.de/portal/ (accessed July 24, 2009).

  21. 21.

    However, according to information provided by the Federal Ministry for the Environment, it will not be possible in future to sustain this huge increase in allocated funding (see BMU 2007a, 33).

  22. 22.

    4.8 million euros came from the Federal Environment Ministry’s Environmental Demonstration Program. Furthermore, research funding amounting to 1.2 million euros will enable Geothermie Neubrandenburg GmbH and GGA Hannover to provide geoscientific support.

  23. 23.

    The Federal Ministry for the Environment provided funding amounting to 1.6 million euros to support the development of the new deep drilling rig Herrenknecht Vertical Terra Invader 350 (Binder & Ruder 2008, 9). The Ministry has also allocated 4.7 million euros to the development of a feed pump by the company Flowserve, which is designed to meet the special requirements of geothermal energy. The Ministry has granted 163,000 € to a research project conducted by the TU Hamburg to optimize plant technology (see BMU 2007a, 34–35).

  24. 24.

    The GGA was renamed the Leibniz Institute for Applied Geophysics (LIAG) in 2008.

  25. 25.

    The sources for the legal information used in this chapter are given in the Index of Legal Sources.

  26. 26.

    The Kreditanstalt für Wiederaufbau (KfW) is a government-owned development bank.

  27. 27.

    When exploration proves unsuccessful, the investor is released from the obligation to repay the remainder of the loan from that point in time. The exploration risk of the respective deep geothermal project – and thus its eligibility for financing – is established prior to granting the loan. In addition to the standard loan interest, the promotional loans include a “risk premium” to cover the exploration risk. In return, the investor receives an expert review and supervision of their deep geothermal project prior to and during the drilling phase.

  28. 28.

    www.izt.de/pdfs/SKEP/SKEP_AP5_Technologiereport.pdf (accessed July 24, 2009).

  29. 29.

    Geothermal plants cool and re-inject the brine pumped up to the surface during the power generation process. There is, therefore, no need to create a separate disposal infrastructure. Brine is re-injected in order to prevent depletion of the water supply. It is possible to pump all substances back into the bedrock without causing any environmental damage or related costs (Fromme 2005, 186).

  30. 30.

    Supported by funding from the Federal Ministry for the Environment, the GGA-Institut Hannover is currently constructing a digital, Internet-based ‘geothermal information system’ which aims to reduce exploration risks (Jung 2007, 5).

  31. 31.

    The unfinished borehole was sealed and the drilling tower dismantled (Janzing 2004b, 73). Research is underway to establish whether exploration in Bad Urach can be resumed with the participation of EnBW (Energie Baden-Württemberg AG) and the municipality of Bad Urach.

  32. 32.

    Erdwärme Kraft GbR’s shareholders are Vattenfall Europe Berlin AG und Co. KG (94.26%) and WEMAG AG Schwerin (5.74%). See http://www.erdwaerme-kraft.de (accessed July 24, 2009).

  33. 33.

    The amount of heat generated (primarily using heat pumps) totals 1,586 GWh.

  34. 34.

    www.geox-gmbh.de/de/Aktuelle_Meldungen.asp?Id=259 (accessed July 24, 2009). The municipality of Insheim is situated next to Landau and it will probably become the site of the third plant in the Upper Rhine region. Drilling of two boreholes is already complete. Another project is in the pipeline in the municipality of Rülzheim, also located in the Palatinate.

  35. 35.

    www.geothermieprojekte.de/projektbeispiel-unterhaching-1 (accessed July 24, 2009).

  36. 36.

    www.ie-leipzig.de/Geothermie/Portal/Projekte/Bruchsal.pdf (accessed September 17, 2009).

  37. 37.

    www.tab.fzk.de/de/projekt/zusammenfassung/ab84.pdf (accessed July 24, 2009).

  38. 38.

    An extreme example of this occurred in Staufen in Baden-Württemberg: in 2007 an operation to drill boreholes 140 m beneath the city hall to harness geothermal heat appears to have perforated a gypsum-keuper layer. Water then seeped into this layer, causing the anhydrite to turn into gypsum and expand by up to 60%. Since this incident, parts of the town’s historic center have already risen by 10 cm, which has so far led to damages worth tens of millions. The building contractor was the town of Staufen (Janzing 2009, 43).

  39. 39.

    The authorities recorded over 2,000 reports of damage in connection with this incident (Janzing 2009, 42). However, no personal injuries occurred.

  40. 40.

    Report by Paschen et al. (2003) at the Office of Technology Assessment at the German Bundestag.

  41. 41.

    The Geothermal Association (Geothermische Vereinigung – GtV) was founded in Bonn in 1991 and was initially conceived as a scientific and technical organization (www.geothermie.de. Rapid changes in the field led to a sharp expansion of its membership base.

  42. 42.

    The Geothermal Association is a member of the German Renewable Energy Foundation (BEE). The specialist journal Geothermische Energie, published by them, has been in circulation since 1998.

  43. 43.

    Federal Ministry of Research and Federal Ministry of Economics.

  44. 44.

    www.geothermie-zentrum.de/portrait.html (accessed September 17, 2009).

  45. 45.

    See http://www.tiefegeothermie.de (accessed October 2, 2009).

  46. 46.

    Key components are a coiled-tubing drilling system, pressurized water technology and facilities to monitor hydraulic stimulation of the bedrock.

  47. 47.

    Federal Mining Act (BBergG) from August 13, 1980; cf. Index of Legal Sources.

  48. 48.

    Projects to explore and utilize geothermal energy are faced with competition from carbon capture and storage (CCS) plans to capture CO2 emitted by coal-fired power plants and pump it underground. CCS projects aim to dispose of carbon dioxide primarily in subterranean cavities and empty oil fields. The ensuing changes in underground pressure could restrict the scope for geothermal drilling.

  49. 49.

    The federal-regional committee for mining’s ad-hoc working group “Delimitation of geothermal areas” elaborated specific criteria to deal with the individual cases (see www.geothermie.de/wissenswelt/gesetze-verordnungen-recht/bergrecht-und-erdwaerme.html, accessed September 10, 2009). The criteria aim to guarantee a standardized approach to delimiting exploration fields across Germany. No clear precedence is given to the harnessing of geothermal energy over other utilization claims – an issue that sparked criticism from the GtV-BV.

  50. 50.

    According to Klinski (2005, 89), a plan approval procedure is only necessary if it has been decided that the proposed project requires an EIA (see Articles 52a and 57c, BBergG) in line with the Ordinance on the Environmental Impact Assessment of Mining Projects (UVP-VBergbau; see Index of Legal Sources). In principle, this only applies to a geothermal plant project if there are plans to undertake deep drilling at depths of at least 1,000 m (see Article 1, Number 8 of the UVP-V Bergbau) within a nature reserve or a special protection area pursuant to the EC’s Habitats or Birds Directive (Directive 92/43/EEC and Directive 79/409/EEC; see Index of Legal Sources). Therefore, as a rule, one can assume that a plan approval procedure, which accounts for other related administrative decisions will not be necessary (ibid.).

  51. 51.

    One of the basic criteria for delimiting the exploitation area is the projected cooling margin. In addition, the distance between the production and injection well is also a significant factor (Schulz 2003).

  52. 52.

    The guarantee fund covers up to 80% of the costs of unsuccessful drilling projects and 1.5 million euros for unplanned cost overruns during drilling.

References

Literature

  • Binder, J. & Ruder, M. (2008). Der Herrenknecht Vertical Terra Invader 350. Geothermische Energie, 60, pp. 9–13.

    Google Scholar 

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (Ed.). (2007a). Innovation durch Forschung. Jahresbericht 2006 zur Forschungsförderung im Bereich der erneuerbaren Energien. Retrieved 6 July 2007, from http://www.erneuerbare-energien.de/inhalt/.

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit). (2007b). Newsletter zur Forschung im Bereich erneuerbare Energien, Edition 6/2007 of 13 Dec 2007.

    Google Scholar 

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (Ed.). (2007c). Tiefe Geothermie in Deutschland. Retrieved 10 June 2009, from http://www.bmu.de/erneuerbare_energien/.

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit). (2007d). Erfahrungsbericht 2007 zum Erneuerbare-Energien-Gesetz (EEG-Erfahrungsbericht) gemäß § 20 EEG. Retrieved 24 July 2009, from http://www.erneuerbare-energien.de/.

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit). (2009a). Erneuerbare Energien in Zahlen – Nationale und internationale Entwicklung. Updated June 2009. Retrieved 14 Oct 2009, from http://www.erneuerbare-energien.de/inhalt/45948/2720/.

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit). (2009b). Innovation durch Forschung. Jahresbericht 2008 zur Forschungsförderung der erneuerbaren Energien. Updated Jan 2009. Retrieved 14 Oct 2009, from http://www.erneuerbare-energien.de/inhalt/45256/45314/.

  • BMWA (Bundesministerium für Wirtschaft und Arbeit) (Ed.). (2005). Innovation und neue Energietechnologien. Das 5. Energieforschungsprogramm der Bundesregierung. Retrieved 11 July 2007, from http://www.bmwi.de/Dateien/.

  • Bußmann, W. (1991). Eine Chance für Geothermie. Einleitung. In W. Bußmann, F. Kabus, P. Seibt (Eds.), Geothermie. Wärme aus der Erde. Technologie, Konzepte Projekte, Karlsruhe, pp. 1–19.

    Google Scholar 

  • Etscheid, G. (2002). “Wir hatten die Nase vorn”. Die ZEIT, No. 37 of 5 Sept 2002. Interview with Herbert Schneider, former director of Geothermie Neubrandenburg GmbH. Retrieved 17 Sept 2009, from http://www.zeit.de/2002/37/Wir_hatten_die_Nase_vorn.

  • Frick, S. & Kaltschmidt, M. (2009). Ökologische Aspekte einer geothermischen Stromerzeugung – Analyse und Bewertung der Umwelteffekte im Lebensweg. Erdöl, Erdgas, Kohle, 125(1), pp. 37–42.

    Google Scholar 

  • Fromme, J. (2005). Räumliche Implikationen von Regenerativ-Energieszenarien für die langfristige Entwicklung des deutschen Stromversorgungssystems. Dissertation. Dortmund. Retrieved 10 Jan 2009, from http://eldorado.tu-dortmund.de.

  • Geothermische Energie. (2002). Schub für die Geothermie-Forschung – Power to Geothermal R&D. Geothermische Energie, 10(34/35), pp. 7.

    Google Scholar 

  • Hagedorn, R. & Menzel, H. (2003). Die Marktstellung, die Branchen- und die Konkurrenzsituation der Geothermie gegenüber der Versorgung aus fossilen Energieträgern und der Versorgung aus anderen Regenerativen Energien. Geothermische Energie, 10(43), pp. 12.

    Google Scholar 

  • Huenges, E. (2004). Auf dem Weg zur Wirtschaftlichkeit geothermischer Stromerzeugung. In E. Huenges & M. Wolfgramm (Eds.), Sandsteine im In-situ-Geothermielabor Groß Schönebeck: Reservoircharakterisierung, Stimulation, Hydraulik und Nutzung. Potsdam. Retrieved 10 June 2009, from http://bib.gfz-potsdam.de/.

  • Janzing, B. (2004a). Es beginnt in Basel. Photon, 9, pp. 60.

    Google Scholar 

  • Janzing, B. (2004b). Erdwärme-Euphorie am Oberrhein. Photon, 9, pp. 72.

    Google Scholar 

  • Janzing, B. (2009). Rumoren in der Tiefe. neue energie, 1, pp. 41–43.

    Google Scholar 

  • Jung, R. (2007). Stand und Aussichten der Tiefengeothermie in Deutschland. Erdöl Erdgas Kohle, 123(2), pp. 1–7.

    Google Scholar 

  • Kellermann, D. (2005). Geothermie – unendliche Energiequelle aus der Tiefe der Erde. Naturschutzblätter, 3, pp. 36–38.

    Google Scholar 

  • Klinski, S. (2005). Überblick über die Zulassung von Anlagen zur Nutzung erneuerbarer Energien. Der rechtliche Anforderungsrahmen für die Nutzung der verschiedenen Arten von erneuerbaren Energien zu Zwecken der Strom-, Wärme- und Gasversorgung. Retrieved 24 July 2009, from http://www.clearingstelle-eeg.de/node/39.

  • Kniesz, J. (2006). Das geothermische Heizwerk in Waren. Umweltpanorama, 12, 5–7. Retrieved 25 Sept 2007, from http://panoramafotografie.info/.

  • Krewitt, W., Nitsch, J., Reinhardt, G. (2005). Renewable energies: between climate protection and nature conservation? International Journal Global Energy Issues, 23(1), pp. 29–42.

    Google Scholar 

  • Lund, J. W. (2000). Weltweiter Stand der geothermischen Energienutzung. Geothermische Energie, 8(28/29), pp. 1.

    Google Scholar 

  • Menzel, H. (2003). Projektgeschichte des hydrothermalen Kraftwerks Neustadt-Glewe. Geothermische Energie, 10(43), pp. 6.

    Google Scholar 

  • Paschen, H., Oertel, D., Grünwald, R. (2003). Möglichkeiten geothermischer Stromerzeugung in Deutschland – Sachstandsbericht. Office of Technology Assessment at the German Bundestag (Ed.), TAB-Arbeitsbericht No. 84. Retrieved 4 June 2009, from http://www.tab-beim-bundestag.de/.

  • Prognos AG et al. (Eds.). (2007a). Evaluierung des 4. Energieforschungsprogramms Erneuerbare Energien. Gesamtbericht. Berlin. Retrieved 7 Apr 2009, from http://www.prognos.com/fileadmin/pdf/1190449164.pdf.

  • Prognos AG et al. (Eds.). (2007b). Evaluierung des 4. Energieforschungsprogramms Erneuerbare Energien. Part E – Geothermie. Berlin. Retrieved 7 Apr 2008, from http://www.bmu.bund.de/files/pdfs/allgemein/application/pdf/eval_g_kl.pdf.

  • Schellschmidt, R., Sanner, B., Jung, R., Schulz, R. (2007). Geothermal energy use in germany. Proceedings of the European Geothermal Congress 2007 from 30 May–1 June 2007. Unterhaching.

    Google Scholar 

  • Schulz, R. (2003). Bergrecht und Erdwärme – Gesichtspunkte zur Bemessung von Erlaubnis- und Bewilligungsfeldern. Geothermische Energie, 10(40), pp. 9–16.

    Google Scholar 

  • Staiß, F. (2007). Jahrbuch erneuerbare Energien. Stiftung Energieforschung Baden-Württemberg (Ed.), Radebeul, Bieberstein.

    Google Scholar 

  • Staiß, F., Schmidt, M., Musiol, F. (2007). Vorbereitung und Begleitung der Erstellung des Erfahrungsberichtes 2007 gemäß § 20 EEG. Zentrum für Sonnenenergie und Wasserstoff-Forschung (ZSW) et al. Stuttgart. Retrieved 10 March 2009, from http://www.erneuerbare-energien.de/.

  • Wenzel, B., Ohlhorst, D., Bruns, E. (2009). Geothermische Stromerzeugung in Deutschland – Stiefkind oder schlafender Riese? Zeitschrift für Energiewirtschaft (ZfE), 33(1), pp. 23–30.

    Google Scholar 

Interviews

  • Bußmann (2007, pers. comm.). Interview with Werner Bußmann, German Geothermal Association (GtV), on 26 Sept 2007.

    Google Scholar 

  • Dürrschmidt (2007, pers. comm.). Interview with Dr. Wolfhart Dürrschmidt, head of division at the Federal Environment Ministry, on 2 Oct 2007.

    Google Scholar 

  • Eisenbeiß (2009, pers. comm.). Telephone interview with Dr. Gerd Eisenbeiß, former head of department at the Federal Research Ministry, on 22 Sept 2009.

    Google Scholar 

  • Sanner (2008, pers. comm.). Telephone interview with Burkhard Sanner, president of the European Geothermal Energy Council (EGEC), from 1992 to 2006 chairman of the German Geothermal Association (GtV), chairman of the European Regional Branch at the International Geothermal Association IGA, on 24 July 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Bruns .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bruns, E., Ohlhorst, D., Wenzel, B., Köppel, J. (2011). Conditions for Innovation in Geothermal Power Generation. In: Renewable Energies in Germany’s Electricity Market. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9905-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9905-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9904-4

  • Online ISBN: 978-90-481-9905-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics