Skip to main content

Thinking Holistically About Gene Transcription

  • Chapter
  • First Online:
Advances in Nuclear Architecture
  • 460 Accesses

Abstract

Gene expression in higher eukaryotes demands a highly orchestrated series of events that is regulated at many levels. This hierarchical control begins in the nucleus where gene expression is activated by gene transcription. The control of transcription itself is multi-layered and incorporates both genetic and epigenetic features. Epigenetic regulation involves post-translational modification of histones and other chromatin proteins, which define the local chromatin environment of a gene and organizational features, which define the nuclear environment. In this essay, I explore how the nuclear environment can contribute to the regulation of gene expression. I discuss very recent experiments that provide compelling evidence for the widespread formation of gene expression networks during the induction of gene expression and evaluate how the dynamic behaviour of chromatin, which is required during the formation of such networks, fits with present models of nuclear organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashall L, Horton CA, Nelson DE et al (2009) Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 324:242–246

    Article  PubMed  CAS  Google Scholar 

  • Baxter J, Merkenschlager M, Fisher AG (2002) Nuclear organization and gene expression. Curr Opin Cell Biol 14:372–376

    Article  PubMed  CAS  Google Scholar 

  • Berezney R, Mortillaro MJ, Ma H et al (1996) The nuclear matrix: a structural milieu for genomic function. Int Rev Cytol 162A:1–65

    Article  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Green J, Das Neves RP et al (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182:1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Cao K, Capell BC, Erdos MR et al (2007) A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A 104:4949–4954

    Article  PubMed  CAS  Google Scholar 

  • Conradie R, Bruggeman FJ, Ciliberto A et al (2010) Restriction point control of the mammalian cell cycle via the cyclin E/Cdk2:p27 complex. FEBS J 277:357–367

    Article  PubMed  CAS  Google Scholar 

  • Cook PR (1999) The organization of replication and transcription. Science 284:1790–1795

    Article  PubMed  CAS  Google Scholar 

  • Cook PR (2010) A model for all genomes: the role of transcription factories. J Mol Biol 395:1–10

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K et al (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853

    Article  PubMed  CAS  Google Scholar 

  • de Lanerolle P, Johnson T, Hofmann WA (2005) Actin and myosin I in the nucleus: what next? Nat Struct Mol Biol 12:742–746

    Article  PubMed  Google Scholar 

  • Ding SL, Shen CY (2008) Model of human aging: recent findings on Werner’s and Hutchinson-Gilford progeria syndromes. Clin Interv Aging 3:431–444

    PubMed  CAS  Google Scholar 

  • Dundr M, Ospina JK, Sung MH et al (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179:095–103

    Article  Google Scholar 

  • Emerson BM (2002) Specificity of gene regulation. Cell 109:267–270

    Article  PubMed  CAS  Google Scholar 

  • Eskiw CH, Rapp A, Carter DR, Cook PR (2008) RNA polymerase II activity is located on the surface of protein-rich transcription factories. J Cell Sci 121:1999–2007

    Article  PubMed  CAS  Google Scholar 

  • Ferrai C, Xie SQ, Luraghi P et al (2010) Poised transcription factories prime silent uPA gene prior to activation. PLoS Biol 8:e1000270

    Article  PubMed  Google Scholar 

  • Filipski E, Lévi F (2009) Circadian disruption in experimental cancer processes. Integr Cancer Ther 8:298–302

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417

    Article  PubMed  CAS  Google Scholar 

  • Geva-Zatorsky N, Rosenfeld N, Itzkovitz S et al (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2:0033

    Article  PubMed  Google Scholar 

  • Goetze S, Mateos-Langerak J, Gierman HJ et al (2007) The three-dimensional structure of human interphase chromosomes in related to the transcriptome map. Mol Cell Biol 27:4475–4487

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Goldman RD, Meyuhas R et al (2003) The nuclear lamina and its functions in the nucleus. Int Rev Cytol 226:1–62

    Article  PubMed  CAS  Google Scholar 

  • Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  PubMed  CAS  Google Scholar 

  • Hadjur S, Williams L, Ryan M et al (2009) Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460:410–413

    PubMed  CAS  Google Scholar 

  • Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell 35:741–753

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Kwon YS, Nunez E et al (2008) Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci U S A 105:19199–19204

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ et al (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–1065

    PubMed  CAS  Google Scholar 

  • Jackson DA, Iborra FJ, Manders EM et al (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell 9:1523–1536

    PubMed  CAS  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:R271–277

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  PubMed  CAS  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M et al (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416:499–506

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Chen S, Maya-Mendoza A et al (2009) Lamin B1 maintains the functional plasticity of nucleoli. J Cell Sci 122:1551–1562

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Yamaguchi S, Mitsui S et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Ihekwaba AE, Elliott M et al (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306:704–708

    Article  PubMed  CAS  Google Scholar 

  • Noordermeer D, de Laat W (2008) Joining the loops: beta-globin gene regulation. IUBMB Life 60:824–833

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE et al (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Mitchell JA et al (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 8:e192

    Article  Google Scholar 

  • Papantonis A, Wada Y, Ohta Y et al. (2010) Changing contacts between TNFα-responsive genes point to immobilization of active RNA polymerases (Submitted)

    Google Scholar 

  • Paschos GK, Baggs JE, Hogenesch JB et al (2010) The role of clock genes in pharmacology. Annu Rev Pharmacol Toxicol 50:187–214

    Article  PubMed  CAS  Google Scholar 

  • Patrinos GP, de Krom M, de Boer E et al (2004) Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev 18:1495–1509

    Article  PubMed  CAS  Google Scholar 

  • Phillips JE, Corces VG (2009) CTCF: Master weaver of the genome. Cell 137:1194–1211

    Article  PubMed  Google Scholar 

  • Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313:2167–2179

    Article  PubMed  CAS  Google Scholar 

  • Schoenfelder S, Sexton T, Chakalova L et al (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42:53–61

    Article  PubMed  CAS  Google Scholar 

  • Shopland LS, Lynch CR, Peterson KA et al (2006) Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J Cell Biol 174:27–38

    Article  PubMed  CAS  Google Scholar 

  • Tang CW, Maya-Mendoza A, Martin C et al (2008) The integrity of a lamin B1-dependent nucleoskeleton is a fundamental determinant of RNA synthesis in human cells. J Cell Sci 121:1014–1024

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576

    PubMed  CAS  Google Scholar 

  • Wada Y, Ohta Y, Xu M et al (2009) A wave of nascent transcription on activated human genes. Proc Natl Acad Sci U S A 106:18357–18361

    Article  PubMed  CAS  Google Scholar 

  • West AG, Fraser P (2005) Remote control of gene transcription. Hum Mol Genet 14:R101–R111

    Article  PubMed  CAS  Google Scholar 

  • Wood PA, Yang X, Hrushesky WJ (2009) Clock genes and cancer. Integr Cancer Ther 8:303–308

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean A. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Jackson, D.A. (2011). Thinking Holistically About Gene Transcription. In: Adams, N., Freemont, P. (eds) Advances in Nuclear Architecture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9899-3_7

Download citation

Publish with us

Policies and ethics