Polarization States in 2D Phononic Crystals and Phononic Crystal Waveguides

  • Younes Achaoui
  • Abdelkrim Khelif
  • Sarah Benchabane
  • Vincent Laude
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 26)


We investigate, using the Plane Wave Expansion method and an energy balance criterion, the polarization states of elastic waves in a two dimensional phononic crystal made of vacuum holes in a silicon host matrix. Pure modes can be identified for the out of plane polarization while a continuous variation of the in-plane polarization with the Bloch wave vector can be observed. The study is then extended to two-dimensional phononic crystal waveguides by using the super- cell technique. The dependence of the elastic wave polarization state on the wave guide width is investigated and shows as well a continuous variation with the Bloch wave vector. Moreover, the variation of the width of the waveguide can be used to tune both the dispersion and the polarization of guided waves.


Elastic Wave Phononic Crystal Bulk Acoustic Wave Waveguide Width Plane Wave Expansion Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sigalas, M.M. and Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid Stat Comm. 86 141 (1993).CrossRefGoogle Scholar
  2. 2.
    Kushwaha, M. S., Halevi, P., Dobrzynski, L., and Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71 2022-2025 (1993).CrossRefGoogle Scholar
  3. 3.
    Kushwaha, M.S., Halevi, P., Martinez, G., Dobzynski, L., and Djafari-Rouhani, B.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev B 49 2313 (1994).CrossRefGoogle Scholar
  4. 4.
    Kushwaha, M.S., Halevi, P.: Band-gap engineering in periodic elastic composites. Appl. Phys. Lett. 64 1085 (1994).CrossRefGoogle Scholar
  5. 5.
    Tanaka, Y. and Tamura, S.: Surface acoustic waves in two-dimensional periodic elastic structures. Phys. Rev. B 58 7958 (1998).CrossRefGoogle Scholar
  6. 6.
    Tanaka, Y. and Tamura, S.: Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer. Phys. Rev. B 60 13294 (1999).CrossRefGoogle Scholar
  7. 7.
    Wu, T., Huang, Z. and Lin, S.: Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Phys. Rev. B 69 094301 (2004).CrossRefGoogle Scholar
  8. 8.
    Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., and Laude, V.: Complete band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74 046610 (2006).CrossRefGoogle Scholar
  9. 9.
    Sun, J. H. and Wu, T. T.: Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Phys. Rev. B 74 144303 (2006).CrossRefGoogle Scholar
  10. 10.
    Sigalas, M. M.: Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. J. Appl. Phys. 84 3026 (1998).CrossRefGoogle Scholar
  11. 11.
    Torres, M., Montero de Espinosa, F.R, Garcia-Pablos, D. and Garcia, N.: Sonic Band Gaps in Finite Elastic Media: Surface States and Localization Phenomena in Linear and Point Defects. Phys. Rev. Lett 82 3054 (1999).CrossRefGoogle Scholar
  12. 12.
    Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., and Laude, V.: Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Phys. Rev. B 68 214301 (2003)CrossRefGoogle Scholar
  13. 13.
    Pennec, Y., Djafari-Rouhani, B., Vasseur, J. O., Larabi, A., Khelif, A., Choujaa, A., Benchabane, S., and laude, V.: Acoustic channel drop tunneling in a phononic crystal. Appl. Phys. Lett. 87 261912 (2005).CrossRefGoogle Scholar
  14. 14.
    Manzanares-Martinez, B. and Ramos-Mendieta, F.: Sagittal acoustic waves in phononic crystals: k-dependent polarization. Phys. Rev. B 76 134303 (2007).CrossRefGoogle Scholar
  15. 15.
    T.-T. Wu and Z. G Huang, Level repulsions of bulk acoustic waves in composite materials. Phys. Rev. B 70 214304 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Younes Achaoui
    • 1
  • Abdelkrim Khelif
    • 2
  • Sarah Benchabane
    • 1
  • Vincent Laude
    • 1
  1. 1.Institut FEMTO-STUniversité de Franche-Comté, CNRS, ENSMM, UTBMBesançon CedexFrance
  2. 2.GeorgiaTech-CNRSAtlantaUSA

Personalised recommendations