Bandgap Characteristics of a 3D Phononic Meta Material Composed of Ordered Quantum Dots

  • Yu-Chieh Wen
  • Tzu-Ming Liu
  • Christian Dais
  • Detlev Grützmacher
  • Tzung-Te Chen
  • Yang-Fang Chen
  • Jin-Wei Shi
  • Chi-Kuang Sun
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 26)

Abstract

The authors demonstrated an artificial material composed of ordered semiconductor quantum dots (QDs) with functional acoustic properties. The phononic bandgap of this three-dimensional (3D) artificial crystal was characterized by Raman and transient reflectivity spectroscopies. The Raman spectra exhibited interferometric patterns caused by the coherent interference of acoustic-phononrelated Raman signals, revealing the structural information of the crystal. In addition, the acoustic tunneling in the QD crystal was studied by the transient spectroscopy with the picosecond ultrasonic technique. The measured signals indicated that the QDs are responsible for the scatterings of the acoustic phonons at the bandgap frequency, while the QD crystal serves as a phononic meta material for low-frequency phonons.

Keywords

Acoustic Phonon Optical Pump Coherent Phonon SiGe Alloy Average Sound Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. .
    Cazayous, M., Groenen, J., Zwick, A., Mlayah, A., Carles, R., Bischoff, J. L., and Dentel D.: Resonant Raman scattering by acoustic phonons in self-assembled quantum-dot multilayers: From a few layers to superlattices. Phys. Rev. B 66 195320 (2002).Google Scholar
  2. .
    Friesen, M., Rugheimer, P., Savage, D. E., Lagally, M. G., van der Weide, D. W., Joynt, R., and Eriksson, M. A.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67 121301 (2003).Google Scholar
  3. .
    Grützmacher, D., Fromherz, T., Dais, C., Stangl, J., Müller, E., Ekinci, Y., Solak, H. H., Sigg, H., Lechner, R. T., Wintersberger, E., Birner, S., Holý, V., and Bauer, G.: Three-dimensional Si/Ge quantum dot crystals. NanoLett. 7 3150 (2007).Google Scholar
  4. .
    Krauss, T. D. and Wise, F. W.: Coherent acoustic phonons in a semiconductor quantum dot. Phys. Rev. Lett. 79 5102 (1997).CrossRefGoogle Scholar
  5. .
    Cerullo, G., Silvestri, S. D., and Banin, U.: Size-dependent dynamics of coherent acoustic phonons in nanocrystal quantum dots. Phys. Rev. B 60 1928 (1999).Google Scholar
  6. .
    Devos, A., Poinsotte, F., Groenen, J., Dehaese, O., Bertru, N., and Ponchet, A.: Strong generation of coherent acoustic phonons in semiconductor quantum dots. Phys. Rev. Lett. 98 207402 (2007).CrossRefGoogle Scholar
  7. .
    Lanzillotti-Kimura, N. D., Fainstein, A., Balseiro, C. A., and Jusserand, B.: Phonon engineering with acoustic nanocavities: Theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations. Phys. Rev. B 75 024301 (2007).Google Scholar
  8. .
    Solak, H. H.: Nanolithography with coherent extreme ultraviolet light. J. Phys. D 39 R171 (2006).Google Scholar
  9. .
    Holy, V., Stangl, J., Fromherz, T., Lechner, R. T., Wintersberger, E., Bauer, G., Dais, C., Müller, E., Grützmacher, D.: X-ray diffraction investigation of a three-dimensional Si/SiGe quantum dot crystal. Phys. Rev. B 79 035324 (2009).Google Scholar
  10. 0.
    Dais, C., Solak, H. H., Ekinci, Y., Müller, E., Sigg, H., Grützmacher D.: Ge quantum dot molecules and crystals: Preparation and properties. Surf. Sci. 601 2787 (2007).CrossRefGoogle Scholar
  11. 1.
    Philipp, H. R. and Taft, E. A.: Optical constants of silicon in the region 1 to 10 eV. Phys. Rev. 120 37 (1960).CrossRefGoogle Scholar
  12. 2.
    Lockwood, D. J., Dharma-wardana, M. W. C., Baribeau, J.-M., and Houghton, D. C.: Folded acoustic phonons in Si/GexSi1-x strained-layer superlattices. Phys. Rev. B 35 2243 (1987); Properties of aluminum were taken from Ref. 11, which was used for estimating the effect of the cap layer on the acoustic reflectivity.Google Scholar
  13. 3.
    Devos, A. and Louarn, A. L.: Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films. Phys. Rev. B 68 045405 (2003).Google Scholar
  14. 4.
    Lin, H.-N., Stoner, R. J., Maris, H. J., and Tauc, J.: Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry. J. Appl. Phys. 69 3816 (1991).CrossRefGoogle Scholar
  15. 5.
    Rytov, S. M., Akust, Zh., Sov. Phys. Acoust. 2 68 (1956).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yu-Chieh Wen
    • 1
  • Tzu-Ming Liu
    • 1
  • Christian Dais
    • 3
  • Detlev Grützmacher
    • 3
    • 4
  • Tzung-Te Chen
    • 5
  • Yang-Fang Chen
    • 5
  • Jin-Wei Shi
    • 6
  • Chi-Kuang Sun
    • 1
    • 2
  1. 1.Department of Electrical Engineering and Graduate Institute of Photonics and OptoelectronicsNational Taiwan UniversityTaipeiTaiwan
  2. 2.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan
  3. 3.Laboratory for Micro- and NanotechnologyPaul Scherrer InstitutVilligenSwitzerland
  4. 4.Institute of Bio- and NanosystemsForschungszentrum JülichJülichGermany
  5. 5.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  6. 6.Department of Electrical EngineeringNational Central UniversityJhongliTaiwan

Personalised recommendations