Band Structure and Phonon Transport in a Phononic Crystal Made of a Periodic Array of Dots on a Membrane

  • B. Djafari-Rouhani
  • Y. Pennec
  • H. Larabi
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 26)


Using the finite difference time domain method, we investigate theoretically the band structure and phonon transport in a new type of phononic crystal constituted by a periodic array of cylindrical dots deposited on a homogeneous membrane. One new finding is the possibility of an absolute low frequency gap (as compared to the Bragg gap), similarly to the case of locally resonant structures. The existence of the low frequency gap requires very appropriate geometrical parameters, whereas it persists for various combinations of the materials constituting the plate and the dots. Besides, the band structure can exhibit one or more higher gaps when increasing the height of the cylinders. The results are discussed for different shapes of the cylinders such as circular, square or rotated square. The band structure can also display an isolated branch with a negative slope, useful for the purpose of negative refraction phenomena. We discuss the condition for wave guiding through different types of linear defects inside the phononic crystal. Finally, we investigate phonon transport between two substrates connected by a periodic array of particles and discuss different features appearing in the transmission spectrum.


Band Structure Dispersion Curve Finite Difference Time Domain Periodic Array Phononic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71 2022 (1993).CrossRefGoogle Scholar
  2. 2.
    Sigalas, M.M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86 141 (1993).CrossRefGoogle Scholar
  3. 3.
    For a comprehensive list of references on phononic crystals, see the phononic database at
  4. 4.
    Vasseur, J.O., Deymier, P.A., Djafari-Rouhani, B., Pennec, Y.: Absolute band gaps in twodimensional phononic crystal plates. Proceedings of IMECE, ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois (2006).Google Scholar
  5. 5.
    Hsu, J.C., Wu, T.-T.: Efficient formulation for band-structure calculations of twodimensional phononic-crystal plate. Phys. Rev. B 74 144303 (2006).Google Scholar
  6. 6.
    Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A., Laude, V.: Complete band gaps in two-dimensional phononic crystal slab. Phys. Rev. E 74 046610 (2006).Google Scholar
  7. 7.
    Vasseur, J.O., Hladky-Hennion, A.C., Djafari-Rouhani, B., Duval, F., Dubus, B., Pennec, Y.: Waveguiding in two-dimensional piezoelectric phononic crystal plate. J. Appl. Phys. 101 114904 (2007).CrossRefGoogle Scholar
  8. 8.
    Hsu, J.C., Wu, T.-T.: Lamb waves in binary locally resonant phononic plates with twodimensional lattices. Appl. Phys. Lett. 90 201904 (2007).CrossRefGoogle Scholar
  9. 9.
    Vasseur, J.O., Deymier, P.A., Djafari-Rouhani, B., Pennec, Y., Hladky-Hennion, A.C.: Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Phys. Rev. B 77 085415 (2008).Google Scholar
  10. 10.
    Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J. O., Hladky-Hennion, A. C.: Lowfrequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Phys. Rev. B 78 104105 2008).Google Scholar
  11. 11.
    Wu, T.-T., Huang, Z.-G., Tsai, T.-C., Wu, T.-C.: Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl. Phys. Lett. 93 111902 (2008).CrossRefGoogle Scholar
  12. 12.
    Djafari-Rouhani, B., Pennec, Y., Larabi, H.: Band structure and wave guiding in a phononic crystal constituted by a periodic array of dots deposited on a homogeneous plate. Proceedings of SPIE on Nanotechnologies in Photonics, San Jose 24-29 January 2009, Volume 7223 on Photonic and phononic crystal materials and devices IX (2009).Google Scholar
  13. 13.
    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng P.: Locally Resonant Sonic Materials. Science 289 1734 (2000).CrossRefGoogle Scholar
  14. 14.
    Goffaux, C., Sanchez-Dehesa, J., Levy Yeyati, A., Lambin, Ph., Khelif, A., Vasseur, J.O., Djafari-Rouhani, B.: Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials. Phys. Rev. Lett. 88 22 (2002).CrossRefGoogle Scholar
  15. 15.
    Sukhovich, A., Jing, L., Page, J. H.: Negative refraction and focusing of ultrasound in twodimensional phononic crystals. Phys. Rev. B 77 014301 (2008) and references therein.Google Scholar
  16. 16.
    Hladky-Hennion, A., Vasseur, J., Dubus, B., Djafari-Rouhani, B., Ekeom, D., Morvan, B.: Numerical analysis of negative refraction of transverse waves in an elastic material. J. Appl. Phys. 104 64906 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut d’Electronique, Microélectronique et Nanotechnologie, UMR CNRS 8520Université de Lille1 Sciences et TechnologiesVilleneuve d’AscqFrance

Personalised recommendations