Guided Elastic Waves at Periodically Structured Surfaces and Interfaces

Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 26)

Abstract

A brief overview is provided of guided elastic waves at periodically structured surfaces, with particular attention given to their folded dispersion relations,the occurrence of band gaps, their coupling to bulk elastic waves, and their interaction with light.Two examples of physical situations and the dynamic behavior they give rise to are used to illustrate these ideas. The first pertains to the dispersion relation for guided waves at a periodic array of thin coplanar slits in a solid, and the role that they play in the scattering of bulk waves. Next, behavior for laser generated dispersive Rayleigh and Sezawa modes in a patterned thin film structure on a substrate is discussed.

Keywords

Elastic Wave Dispersion Curve Rayleigh Wave Surface Acoustic Wave Scattered Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brekhovskikh, L.M.: Propagation of surface Rayleigh waves along the uneven boundary of an elastic body. Sov. Phys. Acoust. 5 288 (1960).Google Scholar
  2. 2.
    Glass, N.E., Maradudin, A.A.: Leaky surface-elastic waves on both flat and strongly corrugated surfaces for isotropic, nondissipative media. J. Appl. Phys. 54 796 (1983).CrossRefGoogle Scholar
  3. 3.
    Giovannini, L., Nizzoli, F., Marvin, A.M.: Theory of surface acoustic phonon normal modes and light scattering cross section in a periodically corrugated surface. Phys. Rev. Lett. 69 1572 (1992).CrossRefGoogle Scholar
  4. 4.
    Maradudin, A.A., Zierau, W.: Surface acoustic waves of sagittal and shear-horizontal polarizations on large-amplitude gratings. Geophys. J. Int. 118 325 (1994).CrossRefGoogle Scholar
  5. 5.
    Dutcher, J.R., Lee, S., Hillebrands, B., McLaughin, G.J., Nickel, B.G., Stegeman, G.I.: Phys. Rev. Lett. 68 2464 (1992).CrossRefGoogle Scholar
  6. 6.
    Lee, S., Giovannini, L., Dutcher, J.R., Nizzoli, F., Stegeman, G.I., Marvin, A.M., Wang, Z., Ross, J.D., Amoddeo, A., Caputi, A.S.: Light-scattering observation of surface acoustic modes in high-order Brillouin zones of a Si(001) grating. Phys. Rev. B 49 2273 (1994).CrossRefGoogle Scholar
  7. 7.
    Dhar, L., Rogers, J.A.: High Frequency Phononic Crystals Characterized With a Picosecond Transient Grating Photoacoustic Technique. Appl. Phys. Lett. 77 1402 (2000).CrossRefGoogle Scholar
  8. 8.
    Sigalas, M., Kushwaha, M.S., Economou, E.N., Kafesaki, M., Psarobas, I.E. and Steurer, W.: Classical vibrational modes in phononic lattices: theory and experiment. Z. Kristallogr. 220 765 (2005).CrossRefGoogle Scholar
  9. 9.
    Every, A.G.: Guided elastic waves at a periodic array of thin coplanar cavities in a solid. Phys. Rev. B 78 174104 (2008).CrossRefGoogle Scholar
  10. 10.
    Danicki, E.J.: Resonant phenomena in bulk-wave scattering by in-plane periodic cracks. J. Acoustic Soc, Am. 105 84 (1999).CrossRefGoogle Scholar
  11. 11.
    Profunser, D.M., Wright, O.B., Matsuda, O.: Imaging ripples on phononic crystals reveals acoustic band structure and Bloch harmonics. Phys. Rev. Lett. 97 055502 (2006).CrossRefGoogle Scholar
  12. 12.
    Maznev, A.A.: Bandgaps and Brekhovskikh attenuation of laser-generated surface acoustic waves in a patterned thin film structure on silicon. Phus. Rev. B 78 155323 (2008).CrossRefGoogle Scholar
  13. 13.
    Angel, Y.C., Achenbach, J.D: Reflection and transmission of elastic waves by a periodic array of cracks: oblique incidence. Wave Motion 7 375 (1985).CrossRefGoogle Scholar
  14. 14.
    Mikata, Y.: Reflection and transmission by a periodic array of coplanar cracks: normal and oblique incidence. J. Appl. Mech. 60 911 (1993).CrossRefGoogle Scholar
  15. 15.
    Maugin, G. A., Chevalier, Y., Louzar, M.: Interfacial waves in the presence of areas of slip. Geophys. J. Int. 118 305 (1994).CrossRefGoogle Scholar
  16. 16.
    Rogers, J.A., Maznev, A.A., Banet, M.J., Nelson, K.A.: Optical generation and characterization of acoustic waves in thin films: fundamentals and applications. Annu. Rev. Mater. Sci. 30 117 (2000).CrossRefGoogle Scholar
  17. 17.
    Maznev, A.A., Mazurenko, A., Zhuoyun, L., Gostein, M.: Laser-based surface acoustic wave spectrometer for industrial applications. Rev. Sci. Instrum. 74 667 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations