Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 24))

  • 999 Accesses

Abstract

Due to the characteristic of the microstructure, nanoparticle ferroelectric ceramics display a considerable different behavior than ordinary ferroelectric ceramics. In this paper a model is proposed from which the constitutive relation of nanoparticle ferroelectric ceramics is deduced. The model is based on the micro structure of the nanoparticles which consist on the ferroelectric phase and a non-ferroelectric matrix phase. The results show that the effective electro-elastic parameters and the constitutive behavior are size dependent. The size effect is most dominant when the grain size is in the range of dozens of nanometers to several nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ye L (1998) Achievement of research and respect of the application of superplasticity for ceramic materials. Guide Report Mater 5:33–36 (in Chinese)

    Google Scholar 

  2. Chen IW, Wang XH (2000) Sintering dense nano-crystalline ceramics without final stage grain growth. Nature 404:168–171

    Article  Google Scholar 

  3. Ahn CH, Rabe KM, JM Triscone (2004) Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303:488–491

    Article  Google Scholar 

  4. Kanno I, Kotera H, Matsunaga T et al (2005) Intrinsic crystalline structure of epitaxial Pb(Zr,Ti)O3 thin films. J Appl Phys 97:074101

    Article  Google Scholar 

  5. Yashima M, Hoshina T, Shimura D et al (2005) Size effect on the crystal structure of barium titanate nanoparticles. J Appl Phys 98:014313

    Article  Google Scholar 

  6. Kim YK, Kim SS, Shin H et al (2004) Thickness effect of ferroelectric domain switching in epitaxial PbTiO3 thin films on Pt(001)/MgO(001). Appl Phys Lett 84:5085–5087

    Article  Google Scholar 

  7. Svalov AV, Vas’kovskiy VO, Kurlyandskaya GV et al (2006) Structural peculiarities and magnetic properties of nanoscale terbium in Tb/Ti and Tb/Si multilayers. Chin Phys Lett 23(1):196–199

    Article  Google Scholar 

  8. Sepliarsky M, Stachiotti MG, Migoni RL (2005) Surface reconstruction and ferroelectricity in PbTiO3 thin films. Phys Rev B 72:014110

    Article  Google Scholar 

  9. Wang GF (2001) Some problems of interfacial mechanics by strain gradient theory. PhD Thesis, Tsinghua University, Beijing (in Chinese, Abstract in English)

    Google Scholar 

  10. Hoshina T (2006) Size and temperature induced phase transition behaviors of barium titanate nanoparticles. J Appl Phys 99(3):054311

    Article  Google Scholar 

  11. Shaw TM, McKinstry ST, McIntyre PC (2000) The properties of ferroelectric films at small dimensions. Annu Rev Mater Sci 30:263–298

    Article  Google Scholar 

  12. Frey MH, Xu Z, Han P et al (1998) The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206(1–4):337–353

    Article  Google Scholar 

  13. Shaw TM, McKinstry ST, McIntyre PC (2000) The properties of ferroelectric films at small dimensions. Annu Rev Mater Sci 30:263–298

    Article  Google Scholar 

  14. Arlt G (1985) Dielectric properties of fine grained barium titanate ceramics. J Appl Phys 58:1619–1625

    Article  Google Scholar 

  15. Deng X (2006) An investigation of processing-microstructure-performance for nan0-BaTiO3 ceramics. PhD Thesis, Tsinghua University, Beijing (in Chinese, Abstract in English)

    Google Scholar 

  16. Mehling V, Tsakmakis Ch, Gross D (2007) Phenomenological model for the macroscopical material behavior of ferroelectric ceramics. J Mech Phys Solids 55:2106–2141

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu L,Yu S and Feng X (2007) Effects of electric fatigue on the butterfly curves of ferroelectric ceramics. Mater Sci Engg A A459:273–277

    Article  Google Scholar 

  18. Ishikawa K, Yoshikawa K, Okada N (1988) Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev B 37(10):5852–5855

    Article  Google Scholar 

  19. Zhong WL, Jiang B, Zhang PL et al (1993) Phase transition in PbTiO3 ultrafine particles of different sizes. J Phys Condensed Matter 5:2619–2624

    Article  Google Scholar 

  20. Wang GF, Feng XQ, Yu SW (2002) Effective elastic moduli and interface effects of nanocrystalline materials. Chinese Sci Bull 47(17):1493–1496

    Article  Google Scholar 

  21. Buscaglia MT, Viviani M, Buscaglia V et al (2006) High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics. Phys Rev B 73:064114

    Article  Google Scholar 

  22. Lupascu DC, Verdier C (2004) Fatigue anisotropy in lead-zirconate-titanate. J Eur Ceram Soc 24:1663–1667

    Article  Google Scholar 

  23. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

This project was supported by the Alexander von Humboldt Foundation, FRG, by the NSFC-No. 10572067, 10772093 and the NBRPC 973 program 2007-CB-936803, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Yu, L., Yu, S., Gross, D. (2011). Constitutive Behavior of Nano-particle Ferroelectric Ceramics. In: Kuna, M., Ricoeur, A. (eds) IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials. IUTAM Bookseries, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9887-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9887-0_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9886-3

  • Online ISBN: 978-90-481-9887-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics