Skip to main content

Cellular and Molecular Effects of Mechanical Stretch on Vascular Cells

  • Chapter
  • First Online:
Mechanosensitivity and Mechanotransduction

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 4))

  • 1006 Accesses

Abstract

The vascular endothelium is a dynamic cellular interface between the vessel wall and the blood stream. It plays an important role by sensing the alterations in biological, chemical, and physical properties of blood flow to maintain homeostasis. Cells in the cardiovascular system are permanently subjected to mechanical forces due to pulsatile nature of blood flow and shear stress, created by the beating hearts. These haemodynamic forces play an important role in the regulation of vascular development, remodeling, wound healing, atherosclerotic lesion formation, and endothelial progenitor cell function. Mechanical stretch can modulate cell alignment and differentiation, migration, survival or apoptosis, vascular remodeling, and autocrine and paracrine functions in smooth muscle cells. Laminar shear stress exerts anti-apoptotic, anti-atherosclerotic, and anti-thrombotic effects on endothelial cells. However, low shear stress or high laminar shear stress exerts atherogenic effect on endothelial cells. Knowledge of the impact of mechanical stretch on the cardiovascular system is vital to the understanding of pathogenesis of cardiovascular diseases and is also crucial to provide new insights in the prevention and therapy of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albinsson S, Hellstrand P (2007) Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle cell. Am J Physiol Cell Physiol 293:C772–C782

    Article  PubMed  CAS  Google Scholar 

  • Albinsson S, Nordstrom I, Hellstrand P (2004) Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J Biol Chem 279:34849–34855

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Karisson L, Svensson PA, Ulfhammer E, Ekman M, JernÃ¥s M, Carlsson LM, Jern S (2005) Differential global gene expression response patterns of human endothelium exposed to shear stress and intraluminal pressure. J Vasc Res 42:441–452

    Article  PubMed  CAS  Google Scholar 

  • Baker AB, Jonas M, Nugent MA, Iozzo RV, Edelman ER (2008) Endothelial cells provide feedback control for vascular remodeling through a echanosensitive autocrine TGF-beta signaling pathway. Circ Res 103:289–297

    Article  PubMed  CAS  Google Scholar 

  • Brakemeier S, Eichler I, Hopp H, Kohler R, Hoyer J (2002) Up-regulation of endothelial stretch-activated cation channels by fluid shear stress. Cardiovasc Res 53:209–218

    Article  PubMed  CAS  Google Scholar 

  • Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14

    Article  PubMed  CAS  Google Scholar 

  • Campos LCG, Miyakawa AA, Barauna VG, Cardoso L, Borin TF, Dallan LA, Krieger JE (2009) Induction of CRP3/MLP expression during vein arterialization is dependent on stretch rather than shear stress. Cardiovasc Res 83:140–147

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Shyu KG, Wang BW, Kuan P (2003) Regulation of hypoxia-inducible factor-1α by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci 105:447–456

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Li W, Quan Z, Sumpio BE (2003) Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and p38 mitogen-activated protein kinase. J Vasc Surg 37:660–668

    Article  PubMed  Google Scholar 

  • Chen Z, Peng IC, Sun W, Su MI, Hsu PH, Fu Y, Zhu Y, DeFea K, Pan S, Tsai MD, Shyy YJ (2009) AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res 104:496–505

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Du J (2007) Mechanical stretch stimulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Res 27:1744–1751

    Article  CAS  Google Scholar 

  • Cheng J, Zhang J, Merched A, Zhang L, Zhang P, Truong L, Boriek AM, Du J (2007) Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by upregulating integrin αVβ3 and stabilization of PINCH-1. J Biol Chem 282:34268–34275

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Wu J, Li Y, Nie Y, Chen H (2008) Activation of MAPK participates in low shear stress-induced IL-8 gene expression in endothelial cells. Clin Biomech 23:S96–S103

    Article  Google Scholar 

  • Cheng WP, Hung HF, Wang BW, Shyu KG (2008) The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovasc Res 77:551–559

    Article  PubMed  CAS  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224

    Article  PubMed  CAS  Google Scholar 

  • Chien S. Li S, Shiu YT, Li YS (2005) Molecular basis of mechanical modulation of endothelial cell migration. Front Biosci 10:985–2000

    Article  Google Scholar 

  • Chiu JJ, Chen LJ, Lee CI, Lee PL, Lee DY, Tsai MC, Lin CW, Usami S, Chien S (2007) Mechanisms of induction of endothelial cell E-selectin expression by smooth muscle cell and its inhibition by shear stress. Blood 110:519–528

    Article  PubMed  CAS  Google Scholar 

  • Csiszar A, Ahmad M, Smith KE, Labinskyy N, Gao Q, Kaley G, Edwards JG, Wolin MS, Ungvari G (2006) Bone morphogenetic protein-2 induces proinflammatory endothelial phenotype. Am J Pathol 168:629–638

    Article  PubMed  CAS  Google Scholar 

  • Csiszar A, Labinskyy N, Smith KE, Rivera A, Bakker EN, Jo H, Gardner J, Orosz Z, Ungvari Z (2007) Down-regulation of bone morphogenetic protein4 expression in coronary arterial endothelial cells: role of shear stress and the cAMP/protein kinase A pathway. Arterioscler Thromb Vasc Biol 27:776–782

    Article  PubMed  CAS  Google Scholar 

  • Cummins PM, Sweeney NO, Killeen MT, Birney YA, Redmond EM, Cahill PA (2007) Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 292:H28–H42

    Article  PubMed  CAS  Google Scholar 

  • Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone MA (2007) Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositiol 3-kinase/Akt-dependnet activation of Nrf2. Circ Res 101:723–733

    Article  PubMed  CAS  Google Scholar 

  • Dartsch P, Hammerle CH, Betz E (1986) Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrate. Acta Anat 125:1543–1552

    Article  Google Scholar 

  • Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618

    PubMed  CAS  Google Scholar 

  • Di Francesco L, Totani L, Dovizio M, Piccoli A, Di Francesco A, Salvatore T, Pandolfi A, Evangelista V, Dercho RA, Seta F, Patrignani P (2009) Induction of prostacyclin by steady laminar shear stress suppresses tumor necrosis factor-α biosynthesis via heme oxygenase-1 in human endothelial cells. Circ Res 104:506–513

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald TN, Shepherd BR, Asada H, Teso D, Muto A, Fancher T, Pimiento J, Maloney SP, Dardik A (2008) Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the Akt pathway. J Cell Physiol 216:389–395

    Article  PubMed  CAS  Google Scholar 

  • Goldfinger LE, Tzima E, Stockton R, Kiosses WB, Kinbara K, Tkachenko E, Gutierrez E, Groisman A, Nguyen P, Chien S, Ginsberg MH (2008) Localized alpha4 integrin phosphorylation directs shear stress-induced endothelial cell alignment. Circ Res 103:177–185

    Article  PubMed  CAS  Google Scholar 

  • Goldman J, Zhong L, Liu SQ (2007) Negative regulation of vascular smooth muscle cell migration by blood shear stress. Am J Physiol Heart Circ Physiol 292:H928–H938

    Article  PubMed  CAS  Google Scholar 

  • Gunningham KS, Gotlieb A (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85:9–23

    Google Scholar 

  • Haga JH, Li YJ, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40:947–960

    Article  PubMed  Google Scholar 

  • Haga JH, Kaunas R, Radeff-Huang J, Weems JM, Estrada KD, Chien S, Brown JH, Seasholtz TM (2008) Pulsatile equibiaxial stretch inhibits thrombin-induced RhoA and NF-κB activation. Biochem Biophys Res Commun 372:216–220

    Article  PubMed  CAS  Google Scholar 

  • Hahn C, Orr W, Sanders JM, Jhaveri KA, Schwartz MA (2009) The subendothelial extracellular matrix modulates JNK activation by flow. Circ Res 104:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Halka AT, Turner NJ, Carter A, Ghosh J, Murphy MO, Kirton JP, Kielty CM, Walker MG (2008) The effects of stretch on vascular smooth muscle cells phenotype in vitro. Cardiovasc Pathol 17:98–102

    Article  PubMed  CAS  Google Scholar 

  • Harrison DG, Widder J, Grumbach I, Chen W, Webber M, Searles C (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Int Med 259:351–363

    Article  CAS  Google Scholar 

  • Healey JS, Baranchuk A, Crystal K, Morillo CA, Garfinkle M, Yusuf S, Connolly SJ (2005) Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 45:1832–1839

    Article  PubMed  CAS  Google Scholar 

  • Hellstrand P, Albinsson S (2005) Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton. Can J Physiol Pharmacol 83:869–875

    Article  PubMed  CAS  Google Scholar 

  • Iizuka K, Machida T, Kawaguchi H, Hirafuji M (2008) Pulsatile mechanical pressure promotes angiotensin-converting enzyme expression in aortic smooth muscle cells. Cardiovasc Drugs Ther 22:383–390

    Article  PubMed  CAS  Google Scholar 

  • Kinderlerer AR, Ali F, Johns M, Lidington EA, Leung V, Boyle JJ, Hamdulay SS, Evans PC, Haskard DO, Mason JC (2008) KLF-dependent, shear stress-induced expression of CD59: a novel cytoprotective mechanism against complement-mediated injury in the vasculature. J Biol Chem 283:14636–14644

    Article  PubMed  CAS  Google Scholar 

  • Julien MA, Haller CA, Wang P, Wen J, Chaikof EL (2007a) Mechanical strain induces a persistent upregulation of syndecan-1 expression in smooth muscle cells. J Cell Physiol 211:167–173

    Article  PubMed  CAS  Google Scholar 

  • Julien MA, Wang P, Haller CA, Wen J, Chaikof EL (2007b) Mechanical strain regulates syndecan-4 expression and shedding in smooth muscle cells through differential activation of MAP kinase signaling pathways. Am J Physiol Cell Physiol 292:C517–C525

    Article  PubMed  CAS  Google Scholar 

  • Kakisis JD, Liapis CD, Sumpio BE (2004) Effects of cyclic strain on vascular cells. Endothelium 11:17–28

    Article  PubMed  CAS  Google Scholar 

  • Kouri FM, Eickelberg O (2006) Transforming growth factor-α, a novel mediator of strain-induced vascular remodeling. Circ Res 99:348–350

    Article  PubMed  CAS  Google Scholar 

  • Korff T, Aufgebauer K, Hecker M (2007) Cyclical stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-β1 response. Circulation 116:2288–2297

    Article  PubMed  CAS  Google Scholar 

  • Kozai T, Eto M, Yang Z, Shimokawa H, Luscher TF (2005) Statins prevent pulsatile stretch-induced proliferation of human saphenous vein smooth muscle cells via inhibition of Rho/Rho-kinase pathway. Cardiovasc Res 68:475–482

    Article  PubMed  CAS  Google Scholar 

  • Lee YU, Drury-Stewart D, Vito RP, Han HC (2008) Morphologic adaptation of arterial endothelial cells to longitudinal stretch in organ culture. J Biomech 41:3274–3277

    Article  PubMed  Google Scholar 

  • Lehoux S (2006) Redox signaling in vascular responses to shear and stretch. Cardiovasc Res 71:269–279

    Article  PubMed  CAS  Google Scholar 

  • Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanism of the vascular response to haemodynamic forces. J Int Med 259:381–392

    Article  CAS  Google Scholar 

  • Lehoux S, Esposito B, Merval R, Loufrani L, Tedgui A (2000) Pulsatile stretch-induced extracellular signal-regulated kinase 1/2 activation in organ culture of rabbit aorta involves reactive oxygen species. Arterioscler Thromb Vasc Biol 20:2366–2372

    PubMed  CAS  Google Scholar 

  • Lemarie CA, Tharaux P, Esposito B, Tedgui A, Lehoux S (2006) Transforming growth factor-α mediates nuclear factor κB activation in strained arteries. Circ Res 99:434–441

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wernig F, Leitges M, Hu Y, Xu Q (2003) Mechanical stress-activated PKCδ regulates smooth muscle cell migration. FASEB J 17:2106–2108

    Article  PubMed  CAS  Google Scholar 

  • Li C, Xu Q (2007) Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 19:881–891

    Article  PubMed  CAS  Google Scholar 

  • Li L, Takake RJ, Natarajan K, Taba Y, Garin G, Tai C, Leung E, Surapisitchat J, Yoshizumi M, Yan C, Abe J, Berk BC (2008) Fluid shear stress inhibits TNF-mediated JNK activation via MRK5-BMK1 in endothelial cells. Biochem Biophys Res Commun 370:159–163

    Article  PubMed  CAS  Google Scholar 

  • Li YSJ, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–1971

    Article  PubMed  Google Scholar 

  • Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA Jr, Balasubramanian V, García-Cardeña G, Jain MK (2005) Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96:e48–e57

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Qu MJ, Qin KR, Li H, Li H, Li ZK, Shen BR, Jiang ZL (2008) Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J 94:1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Liu SQ (1999) Focal expression of angiotensin II type 1 receptor and smooth muscle cell proliferation in the neointima of experimental vein grafts: relation to eddy blood flow. Arterioscler Thromb Vasc Biol 19:2630–2639

    PubMed  CAS  Google Scholar 

  • Liu WF, Nelson CM, Tan JL, Chen CS (2007) Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ Res 101:e44–e52

    Article  PubMed  CAS  Google Scholar 

  • Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK (2001) Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276:341–347

    Article  PubMed  CAS  Google Scholar 

  • McCue S, Dajnowiec D, Xu F, Zhang M, Jackson MR, Langille BL (2006) Shear stress regulates forward and reverse planar cell polarity of vascular endothelium in vivo and in vitro. Circ Res 98:939–946

    Article  PubMed  CAS  Google Scholar 

  • Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J (2008) Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am J Physiol Heart Circ Physiol 295:H736–H742

    Article  PubMed  CAS  Google Scholar 

  • Mowbray AL, Kang DH, Rhee SG, Kang SW, Jo H (2008) Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX1 as a mechanosensitive antioxidant. Biol Chem 283:1622–1627

    CAS  Google Scholar 

  • Mun GI, An SM, Park H, Jo H, Boo YC (2008) Laminar shear stress inhibits lipid oxidation induced by high glucose plus arachidonic acid in endothelial cells. Am J Physiol Heart Circ Physiol 295:H1966–H1973

    Article  PubMed  CAS  Google Scholar 

  • Nikolovski J, Kim B, Mooney DJ (2003) Cyclic strain inhibits switching of smooth muscle cells to an osteoblast-like phenotype. FASEB J 17:455–457

    PubMed  CAS  Google Scholar 

  • Nishimura K, Li W, Hoshino Y, Kadohama T, Asada H, Ohgi S, Sumpio BE (2006) Role of AKT in cyclic strain-induced endothelial cell proliferation and survival. Am J Physiol. Cell Physiol 290:C812–C821

    Article  PubMed  CAS  Google Scholar 

  • Ntambi JM, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43:91–104

    Article  PubMed  CAS  Google Scholar 

  • Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T (1999) Mechanotransduction of rat aortic vascular smooth muscle cells require RhoA and intact actin filaments. Circ Res 85:5–11

    PubMed  CAS  Google Scholar 

  • Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J (2009) Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol 106:203–211

    Article  PubMed  CAS  Google Scholar 

  • OrrAW, Hahn C, Blackman BR, Schwartz MA (2008) p21-activated kinase signaling regulates oxidant-dependent NF-κB activation by flow. Circ Res 103:671–679

    Article  PubMed  CAS  Google Scholar 

  • Orr AW, Helmke BP. (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  PubMed  CAS  Google Scholar 

  • Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  • Patridge J, Carlsen H, Enesa K, Chaudhury H, Zakkar M, Luong L, Kinderlerer A, Johns M, Blomhoff R, Mason JC, Haskard DO, Evans PC (2007) Laminar shear stress acts as a switch to regulate divergent functions of NF-κB in endothelial cells. FASEB J 21:3553–3561

    Article  CAS  Google Scholar 

  • Pyle AL, Atkinson JB, Pozzi A, Reese J, Eckes B, Davidson JM, Crimmins DL, Young PP (2008) Regulation of the atheroma-enriched protein, SPRR3, in vascular smooth muscle cells through cyclic strain is dependent on integrin α1β1/collagen interaction. Am J Pathol 173:1577–1588

    Article  PubMed  CAS  Google Scholar 

  • Qi YX, Qu MJ, Long DK, Liu B, Yao QP, Chien S, Jiang ZL (2008) Rho-GDP dissociation inhibitor alpha down-regulated by low shear stress promotes vascular smooth muscle cell migration and apoptosis: a proteomic analysis. Cardiovasc Res 80:114–122

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Tian J, Zhang P, Fan Y, Chen L, Guan Y, Fu Y, Zhu Y, Chien S, Wang N (2007) Laminar shear stress up-regulates the expression of stesroyl-CoA desaturase-1 in vascular endothelial cells. Cardiovasc Res 74:506–514

    Article  PubMed  CAS  Google Scholar 

  • Qu MJ, Liu B, Wang HQ, Yan ZQ, Shen BR, Jiang ZL (2007) Frequency-dependent phenotype modulation of vascular smooth muscle cells under cyclic mechanical strain. J Vasc Res 44:345–353

    Article  PubMed  Google Scholar 

  • Qu MJ, Liu B, Qi YX, Jiang ZL (2008) Role of Rac and Rho-GDI alpha in the frequency-dependent expression of h1-calponin in vascular smooth muscle cells under cyclic mechanical strain. Ann Biomed Engin 36:1481–1488

    Article  Google Scholar 

  • Reinhart-King C, Fujiwara K, Berk BC (2008) Physiologic stress-mediated signaling in the endothelium. Method Enzymol 443:25–44

    Article  CAS  Google Scholar 

  • Reusch P, Wagdy H, Reusch R, Wilson E, Ives HE (1996) Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ Res 79:1046–1053

    PubMed  CAS  Google Scholar 

  • Richard MN, Deniset JF, Kneesh AL, Blackwood D, Pierce GN (2007) Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J Biol Chem 282:23081–23088

    Article  PubMed  CAS  Google Scholar 

  • Ridger V, Krams R, Carpi A, Evans PC (2008) Hemodynamic parameters regulating vascular inflammation and atherosclerosis: a brief update. Biomed Pharmacother 62:536–540

    Article  PubMed  CAS  Google Scholar 

  • Riha G.M, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Roles of hemodynamic forces in vascular cell differentiation. Ann Biomed Eng 33:772–779

    Article  PubMed  Google Scholar 

  • Shaik SS, Soltau TD, Chaturvedi G, Totapally B, Hagood JS, Andrews WW, Athar M, Voitenok NN, Killingsworth CR, Patel RP, Fallon MB, Maheshwari A (2009) Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38β MAPK-NF-κB pathway. J Biol Chem 284:5945–5955

    Article  PubMed  CAS  Google Scholar 

  • Simmers MB, Pryor AW, Blackman BR (2007) Arterial shear stress regulates endothelial cell-directed migration, polarity, and morphology in confluent monolayers. Am J Physiol Heart Circ Physiol 293:H1937–H1946

    Article  PubMed  CAS  Google Scholar 

  • Shyu KG (2009) Cellular and molecular effects of mechanical stretch on vascular cells and cardiomyocytes. Clin Sci 116:377–389

    Article  PubMed  CAS  Google Scholar 

  • Shyu KG, Chao YM, Wang BW, Kuan P (2005) Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells. Hypertension 46:614–621

    Article  PubMed  CAS  Google Scholar 

  • Shyu KG, Chang ML, Wang BW, Kuan P, Chang H (2001) Cyclical mechanical stretching increases the expression of vascular endothelial growth factor in rat vascular smooth muscle cells. J Formos Med Assoc 100:741–747

    PubMed  CAS  Google Scholar 

  • Shyu KG, Wang BW, Kuan P, Chang H (2008) RNA interference for discoidin domain receptor 2 attenuates neointimal formation in balloon injured rat carotid artery. Arterioscler Thromb Vasc Biol 28:1447–1453

    Article  PubMed  CAS  Google Scholar 

  • Standly PR., Cammarata A, Nolan BP, Purgason CT, Stanley MA (2002) Cyclic stretch induces vascular smooth muscle cell alignment via NO signaling. Am J Physiol Heart Circ Physiol 283:H1907–H1914

    Google Scholar 

  • Standley PR, Obards TJ, Martina CI (1999) Cyclic stretch regulates autocrine IGF-1 in vascular smooth muscle cells: implications in vascular hyperplasia. Am J Physiol Endocrinol Metab 39:E697–E705

    Google Scholar 

  • Stolberg S, McCloskey KE (2009) Can shear stress direct stem cell fate? Biochnol Prog 25:10–19

    Article  CAS  Google Scholar 

  • Su BY, Shontz KM, Flavahan NA, Nowicki PT (2006) The effect of phenotype on mechanical stretch-induced vascular smooth muscle cell apoptosis. J Vasc Res 43:229–237

    Article  PubMed  Google Scholar 

  • Sud N, Kumar S, Wedgwood S, Black SM (2009) Modulation of PKCδ signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. Am J Physiol Lung Cell Physiol 296:L519–L526

    Article  CAS  Google Scholar 

  • Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120:348–354

    Article  PubMed  CAS  Google Scholar 

  • Tao J, Yang Z, Wang JM, Wang LC, Luo CF, Tang AL, Dong YG, Ma H (2007) Shear stress increases Cu/Zn SOD activity and mRNA expression in human endothelial progenitor cells. J Hum Hypertens 21:353–358

    Article  PubMed  CAS  Google Scholar 

  • Thodeti CK, Mattews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Deaton RA, Hastings NE, Shang Y, Moehle CW, Eriksson U, Topouzis S, Wamhoff BR, Blackman BR, Owens GK (2009) PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is up-regulated in endothelial cells exposed to atherosclerosis-prone flow patterns. Am J Physiol Heart Circ Physiol 296:H442–H452

    Article  PubMed  CAS  Google Scholar 

  • Tock J, Van Putten V, Stenmark KH, Nemenoff RA (2003) Induction of SM alpha-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem Biophys Res Commun 301:1116–1121

    Article  PubMed  CAS  Google Scholar 

  • Traub O, Berk B.C. (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    PubMed  CAS  Google Scholar 

  • Ulfhammer E, Carlstrom M, Bergh N, Larrson P, Karlsson L, Jern S (2009) Suppression of endothelail t-PA expression by prolonged high laminar shear stress. Biochem Biophys Res Commun 379:532–536

    Article  PubMed  CAS  Google Scholar 

  • van Thienen JV, Fledderus JO, Dekker RJ, Rohlena J, van Ijzendoorn GA, Kootstra NA, Pannekoek H, Horrevoets AJ (2006) Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res 72:231–240

    Article  PubMed  CAS  Google Scholar 

  • Wang BW, Chang H, Lin S, Kuan P, Shyu KG (2003) Induction of matrix metalloproteinase-14 and –2 by cyclical mechanical stretch is mediated by tumor necrosis factor-α in cultured human umbilical vein endothelial cell. Cardiovasc Res 59:460–469

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ip W, Boissy R, Grood ES (1995) Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J Biomech 28:1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Li M, Lin PH, Yao Q, Chen C (2008) Fluid shear stress regulates the expression of TGF-β1 and its signaling moleculaes in mouse embryo mesenchymal progenitor cells. J Surg Res 150:266–270

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C (2005) Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol 25:1817–1823

    Article  PubMed  CAS  Google Scholar 

  • Wang L, James P, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  PubMed  CAS  Google Scholar 

  • Wang XL, Fu A, Raghavakaimal S, Lee HC (2007) Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomic 7:588–596

    Article  CAS  Google Scholar 

  • Wasserman SM, Mehraban F, Komuves LG, Yang RB, Tomlinson JE, Zhang Y, Spriggs F, Topper JN (2002) Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol Genomics 12:13–23

    PubMed  CAS  Google Scholar 

  • Wilson E, Mai Q, Sudhir K, Weiss RH, Ives HE (1993) Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol 123:741–747

    Article  PubMed  CAS  Google Scholar 

  • Woo CH, Shihido T, McClain C, Lim JH, Li JD, Yang J, Yan C, Abe J (2008) Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced anti-inflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res 102:538–545

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Fukuda T, Li Y, Zha X, Qin J, Wu C (2005) Molecular dissection of PINCH-1 reveals a mechanism of coupling and uncoupling of cell shape modulation and survival. J Biol Chem 280:27631–27637

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J (2003) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 95:2081–2088

    PubMed  Google Scholar 

  • Yang Z, Tao J, Wang JM, Tu C, Xu MG, Wang Y, Pan SR (2006) Shear stress contributes to t-PA mRNA expression in human endothelial progenitor cells and nonthrombogenic potential of small diameter artificial vessels. Biochem Biophys Res Commun 342:577–584

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wang JM, Wang LC, Chen L, Tu C, Luo CF, Tang AL, Wang SM, Tao J (2007) In vitro shear stress modulates antithrombogenic potentials of human endothelial progenitor cells. J Thromb Thrombolysis 23:121–127

    Article  PubMed  Google Scholar 

  • Ye C, Bai L, Yan ZQ, Wang YH, Jiang ZL (2008) Shear stress and vascular smooth muscle cells promote endothelial differentiation of endothelial progenitor cells via activation of Akt. Clin Biomech 23:S118–S124

    Article  Google Scholar 

  • Yin W, Ghebrehiwet B, Weksler B, Peerschke ELB (2007) Classical pathway complement activation on human endothelial cells. Mol Immunol 44:2228–2234

    Article  PubMed  CAS  Google Scholar 

  • Yin W, Ghebrehiwet B, Weksler B, Peerschke ELB (2008) Regulated complement deposition on the surface of human endothelial cells: effect of tobacco smoke and shear stress. Thromb Res 122: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Zeidan A, Broman J, Hellstrand P, Sward K (2003) Cholesterol dependence of vascular ERK1/2 activation and growth in response to stretch: role of endothelin-1. Arterioscler Thromb Vasc Res 23:1528–1534

    Article  CAS  Google Scholar 

  • Zhang Y, Lee TS, Kolb EM, Sun K, Lu X, Sladek FM, Kassab GS, Garland T Jr, Shyy JY (2006) AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler Thromb Vasc Biol 26:1281–1287

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Fu Y, Hou Y, Wang N, Guan Y, Tang C, Shyy JY, Zhu Y (2008) Laminar shear stress regulates liver X receptor in vascular endothelial cells. Arterioscler Thromb Vasc Biol 28:527–533

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kou-Gi Shyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shyu, KG. (2010). Cellular and Molecular Effects of Mechanical Stretch on Vascular Cells. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity and Mechanotransduction. Mechanosensitivity in Cells and Tissues, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9881-8_8

Download citation

Publish with us

Policies and ethics