Skip to main content

Single-Molecule Analysis of Molecular Recognition Between Signaling Proteins RAS and RAF

  • Chapter
  • First Online:
Cell Signaling Reactions
  • 1049 Accesses

Abstract

Single-molecule kinetic and dynamic analyses of the biochemical reactions in living cells are one of the most useful methods of investigating the molecular mechanisms of cellular reactions, especially those involved in signal transduction on the plasma membrane. Here, we focus on single-molecule analyses of the intracellular signaling from RAS to RAF, which occurs on the plasma membrane. RAS and RAF are cell signaling proteins that regulate various cellular behaviors, including cell fate determination for proliferation and differentiation. Using single-molecule techniques in living cells, including single-pair Förster resonance energy transfer (FRET) detection and single-molecule tracking, we directly measured the elementary processes in the reactions between RAS and RAF, including the dissociation of RAS and RAF, the conformational changes in RAF, and the diffusion of RAS and RAF along the plasma membrane. Based on the results of these measurements, we discuss how the mutual molecular recognition between RAS and RAF facilitates accurate signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wellbrock C, Karasarides M, Marais R (2004) The Raf proteins take center stage. Nat Rev Mol Cell Biol 5:875–885

    Article  CAS  PubMed  Google Scholar 

  2. Repasky GA, Chenette EJ, Der CJ (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14:639–647

    Article  CAS  PubMed  Google Scholar 

  3. Downward J (2003) Targeting Ras signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  4. Lowy DR, Willumsen BM (1993) Function and regulation of Ras. Annu Rev Biochem 62:851–891

    Article  CAS  PubMed  Google Scholar 

  5. Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T (1991) Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60:349–400

    Article  CAS  PubMed  Google Scholar 

  6. Avruch J, Zhang X, Kryiakis JM (1994) Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci 19:279–283

    Article  CAS  PubMed  Google Scholar 

  7. Daum G, Eisenmann-Tappe I, Fries H-W, Troppmair J, Rapp UR (1994) The ins and outs of Raf kinases. Trends Biochem Sci 19:474–480

    Article  CAS  PubMed  Google Scholar 

  8. Hancock JF (2003) Ras proteins: different signals from different localizations. Nat Rev Mol Cell Biol 4:373–384

    Article  CAS  PubMed  Google Scholar 

  9. Leevers SJ, Paterson HF, Marshall CJ (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–414

    Article  CAS  PubMed  Google Scholar 

  10. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467

    Article  CAS  PubMed  Google Scholar 

  11. Matsubara K, Kishida S, Matsuura Y, Kitayama H, Noda M et al (1999) Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 18:1303–1312

    Article  CAS  PubMed  Google Scholar 

  12. Song C, Hu C-D, Masago M, Ki K, Yamawaki-kataoka Y et al (2001) Regulation of a novel human phospholipase C, PLCε, through membrane targeting by Ras. J Biol Chem 276:2752–2757

    Article  CAS  PubMed  Google Scholar 

  13. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G et al (2001) Ras activation of the Raf kinase: Tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155

    Article  CAS  PubMed  Google Scholar 

  14. Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214

    Article  CAS  PubMed  Google Scholar 

  15. Warne PH, Viciana PR, Downward J (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ et al (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–313

    Article  CAS  PubMed  Google Scholar 

  17. Jd R, Bos JL (1997) Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623–625

    Article  Google Scholar 

  18. Hibino K, Watanabe TM, Kozuka J, Iwane AH, Okada T et al (2003) Single- and multiple-molecule dynamics of the signaling from H-Ras to cRaf-1 visualized on the plasma membrane of living cells. Chemphyschem 4:748–753

    Article  CAS  PubMed  Google Scholar 

  19. Hibino K, Shibata T, Yanagida T, Sako Y (2009) A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition. Biophys J 97:1277–1287

    Article  CAS  PubMed  Google Scholar 

  20. Cutler RE, Stephens RM, Saracino MR, Morrison DK (1998) Autoregulation of the Raf-1 serine/threonine kinase. Proc Natl Acad Sci USA 95:9214–9219

    Article  CAS  PubMed  Google Scholar 

  21. Terai K, Matsuda M (2005) Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep 6:251–255

    Article  CAS  PubMed  Google Scholar 

  22. Hibino K, Hiroshima M, Takahashi M, Sako Y (2009) Single-molecule imaging of fluorescent proteins expressed in living cells. Method Mol Biol 544:451–460

    Article  CAS  Google Scholar 

  23. Tzivion G, Luo Z, Avruch J (1998) A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394:88–92

    Article  CAS  PubMed  Google Scholar 

  24. Morrison DK, Heidecker G, Rapp UR, Copeland TD (1993) Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem 268:17309–17316

    CAS  PubMed  Google Scholar 

  25. Satoh T, Endo M, Nakafuku M, Akiyama T, Yamamoto T et al (1990) Accumulation of p21rasGTP in response to stimulation with epidermal growth factor and oncogene products with tyrosine kinase activity. Proc Natl Acad Sci USA 87:7926–7929

    Article  CAS  PubMed  Google Scholar 

  26. Gibbs JB, Marshall MS, Scolnick EM, Dixon RAF, Vogel US (1990) Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J Biol Chem 265:20437–20442

    CAS  PubMed  Google Scholar 

  27. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D et al (1997) Role of phospoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467

    Article  CAS  PubMed  Google Scholar 

  28. Nimnual AS, Yatsula BA, Bar-Sagi D (1998) Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279:560–563

    Article  CAS  PubMed  Google Scholar 

  29. Heidorn S, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221

    Article  CAS  PubMed  Google Scholar 

  30. Dong C, Waters S, Holt K, Pessin J (1996) SOS phosphorylation and disassociation of the Grb2-SOS complex by the ERK and JNK signaling pathways. J Biol Chem 271:6328–6332

    Article  Google Scholar 

  31. Bhalla U, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387

    Article  CAS  PubMed  Google Scholar 

  32. Brightman F, Fell D (2000) Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett 482:169–174

    Article  CAS  PubMed  Google Scholar 

  33. Kholodenko B (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267:1583–1588

    Article  CAS  PubMed  Google Scholar 

  34. Schoeberl B, Eichler-Jonsson C, Gilles E, Müller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20:370–375

    Article  PubMed  Google Scholar 

  35. Sasagawa S, Ozaki Y, Fujita K, Kuroda S (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7:365–373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank our collaborators, Tatsuo Shibata (Hiroshima University) and Toshio Yanagida (Osaka University), and the members of our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayo Hibino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Hibino, K., Sako, Y. (2011). Single-Molecule Analysis of Molecular Recognition Between Signaling Proteins RAS and RAF. In: Sako, Y., Ueda, M. (eds) Cell Signaling Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9864-1_3

Download citation

Publish with us

Policies and ethics