Skip to main content

Extracting the Underlying Unique Reaction Scheme from a Single-Molecule Time Series

  • Chapter
  • First Online:
Cell Signaling Reactions

Abstract

Single molecule spectroscopy provides us with a new means to look deeply into the question of how an individual molecule behaves when performing biological functions in a thermally fluctuating environment. However, what information one can extract from the observed data is still an open question. We overview our new method which extracts the underlying reaction scheme, a state-space network (SSN), from the time series data of an experimental measurement. We demand that a time series analysis should provide not only an interpretation of the dynamical behavior but also provide new insights into biological functions buried in ensemble-based measurements. Our method is based on the combination of information theory and Wavelet multiresolution decomposition analysis. The resultant reaction scheme does not rely on an a priori ansatz like local equilibrium and detailed balance. It is mathematically assured as unique, minimally complex and stochastic, but best predictive. We demonstrate the potential of this method by applying it to the analysis of an anomalous conformation in Flavin oxidoreductase dependent on the timescale of observation. We also discuss future perspectives concerning its use as a new means for the exploration of single molecule biophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  2. Baba A, Komatsuzaki T (2007) Construction of effective free energy landscape from single-molecule time series. Proc Natl Acad Sci USA 104(49):19,297–19,302

    Google Scholar 

  3. Baba A, Komatsuzaki T (2010) Multidimensional energy landscapes in single molecule biophysics. Adv Chem Phys 145: in press

    Google Scholar 

  4. Ball KD, Berry RS, Kunz RE, Li FY, Proykova A, Wales DJ (1996) From Topographies to dynamics on multidimensional potential energy surfaces of atomic clusters. Science 271:963

    Article  CAS  Google Scholar 

  5. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  6. Barkai E, Jung Y, Silbey R (2004) Protein conformational dynamics probed by single-molecule electron transfer. Annu Rev Phys Chem 55:457–507

    Article  CAS  PubMed  Google Scholar 

  7. Crutchfield JP, Young K (1989) Inferring statistical complexity. Phys Rev Lett 63:105

    Google Scholar 

  8. Daubechies I (1992) Ten lectures on wavelets. (Soc Indust Appl Math, New York)

    Google Scholar 

  9. Debnath P, Min W, Xie XS, Cherayil BJ (2005) Multiple time scale dynamics of distance fluctuations in a semiflexible polymer: a one-dimensional generalized langevin equation treatment. J Chem Phys 123:204,903

    Google Scholar 

  10. Evans DA, Wales DJ (2003) Free energy landscapes of model peptides and proteins. J Chem Phys 118(8):3891–3897

    Article  CAS  Google Scholar 

  11. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  CAS  PubMed  Google Scholar 

  12. Gallos LK, Song C, Havlin S, Makse HA (2007) Scaling theory of transport in complex biological networks. Proc Natl Acad Sci USA 104:7746–7751

    Article  CAS  PubMed  Google Scholar 

  13. Gfeller D, Rios PDL, Caflisch A, Rao F (2007) Complex network analysis of free-energy landscapes. Proc Natl Acad Sci USA 104:1817–1822

    Article  CAS  PubMed  Google Scholar 

  14. Gopich IV, Szabo A (2003) Single-macromolecule fluorescence resonance energy transfer and free-energy profiles. J Phys Chem B 107:5058–5063

    Article  CAS  Google Scholar 

  15. Grote RF, Hynes JT (1980) The stable states picture of chemical reactions. II. rate constants for condensed and gas phase reaction models. J Chem Phys 73:2715–2732

    CAS  Google Scholar 

  16. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:908

    Google Scholar 

  17. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620

    Article  Google Scholar 

  18. Jaynes ET (1957) Information theory and statistical mechanics II. Phys Rev 108:171

    Article  Google Scholar 

  19. Kalafut B, Visscher K (2008) An objective, model-independent method for detection of non-uniform steps in noisy signals. Comp Phys Commun 179:716

    Article  CAS  Google Scholar 

  20. Kinoshita M, Kamagata K, Maeda M, Goto Y, Komatsuzaki T, Takahashi S (2007) Development of a technique for the investigation of folding dynamics of single proteins for extended time periods. Proc Natl Acad Sci USA 104:10,453

    Google Scholar 

  21. Klimov DK, Thirumalai D (1997) Viscosity dependence of the folding rates of proteins. Phys Rev Lett 79:317–320

    Article  CAS  Google Scholar 

  22. Komatsuzaki T, Baba A, Kawai S, Toda M, Straub JE, Berry RS (2010) Ergodic problems for real complex systems in chemical physics. Adv Chem Phys 145: in press

    Google Scholar 

  23. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    Article  CAS  Google Scholar 

  24. Krivov SV, Karplus M (2004) Hidden complexity of free energy surfaces for peptide (protein) folding. Proc Natl Acad Sci USA 101:14,766–14,770

    Google Scholar 

  25. Krzanowski WJ (2003) Non-parametric estimation of distance between groups. J App Stat 30(7):743–750

    Article  Google Scholar 

  26. Li CB, Yang H, Komatsuzaki T (2008) Complex network of protein conformational fluctuation buried in single molecule time series. Proc Natl Acad Sci USA 105:536–541

    Article  CAS  PubMed  Google Scholar 

  27. Li CB, Yang H, Komatsuzaki T (2009) New quantification of local transition heterogeneity of multiscale complex networks constructed from single-molecule time series. J Phys Chem B 113:14,732–14,741

    Google Scholar 

  28. Lippitz M, Kulzer F, Orrit M (2005) Statistical evaluation of single nano-object fluorescence. ChemPhysChem 6:770–789

    Article  CAS  PubMed  Google Scholar 

  29. Luo G, Andricioaei I, Xie XS, Karplus M (2006) Dynamic distance disorder in proteins is caused by trapping. J Phys Chem B 110:9363–9367

    Article  CAS  PubMed  Google Scholar 

  30. Michalet X, Weiss S, Jager M (2006) Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106(5):1785–1813

    Article  CAS  PubMed  Google Scholar 

  31. Min W, Luo G, Cherayil BJ, Kou SC, Xie XS (2005) Observation of a power-law memory Kernel for fluctuations within a single protein molecule. Phys Rev Lett 94: 198,302

    Google Scholar 

  32. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Inst 74(8):3597–3619

    Article  CAS  Google Scholar 

  33. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron-transfer. Nature 355(6363):796–802

    Article  CAS  PubMed  Google Scholar 

  34. Rao F, Caflisch A (2004) The protein folding network. J Mol Biol 342:299–306

    Article  CAS  PubMed  Google Scholar 

  35. Rhoades E, Gussakovsky E, Haran G (2003) Watching proteins fold one molecule at a time. Proc Natl Acad Sci USA 100(6):3197–3202

    Article  CAS  PubMed  Google Scholar 

  36. Schuler B, Lipman EA, Eaton EA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747

    Article  CAS  PubMed  Google Scholar 

  37. Shalizi CR, Crutchfield JP (2001) Computational mechanics: pattern and prediction, structure and simplicity. J Stat Phys 104:819–881

    Article  Google Scholar 

  38. Shannon C, Weaver W (1948) A mathematical theory of communication. University of Illinois Press, Urbana, IL

    Google Scholar 

  39. Socci ND, Onuchic JN, Wolynes PG (1996) Diffusive dynamics of the reaction coordinate for protein folding funnels. J Chem Phys 104:5860–5868

    Article  CAS  Google Scholar 

  40. Still S, Cutchfield JP, Ellison CJ (2007) Optimal causal inference. http://lanl.arxiv.org/abs/0708.1580

    Google Scholar 

  41. Stillinger FH (1995) A topographic view of supercooled liquids and glass formation. Science 267:1935–1939

    Article  CAS  PubMed  Google Scholar 

  42. Talaga DS, Lau WL, Roder H, Tang JY, Jia YW, DeGrado WF, Hochstrasser RM (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc Natl Acad Sci USA 97(24):13,021–13,026

    Google Scholar 

  43. Tang J, Marcus RA (2006) Chain dynamics and Power-law distance fluctuations of single-molecule systems. Phys Rev E 73:022,102

    Google Scholar 

  44. Wales DJ (2003) Energy landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  45. Watkins LP, Yang H (2005) Detection of intensity change points in time-resolved single-molecule measurements. J Phys Chem B 109(1):617–628

    Article  CAS  PubMed  Google Scholar 

  46. Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480

    Article  CAS  PubMed  Google Scholar 

  47. Yanagida T, Ishii Y (2009) Single molecule dynamics in life science. Wiley, Weinheim

    Google Scholar 

  48. Yang H, Luo G, Karnchanaphanurach P, Louie TM, Rech I, Cova S, Xun L, Xie XS (2003) Protein conformational dynamics probed by single-molecule electron transfer. Science 302:262–266

    Article  CAS  PubMed  Google Scholar 

  49. Zhang K, Chang H, Fu A, Alivisatos AP, Yang H (2006) Continuous distribution of emission intensity and its non-linear correlation to luminescence decay rates from single cdse/zns quantum dots. Nano Lett 6:843–847

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Haw Yang for his continuous valuable contributions to our project from his experimentalist’s viewpoint. We also thank Profs. Satoshi Takahashi and Mikito Toda for their valuable discussions. We acknowledge financial support from JSPS, JST/CREST, Grant-in-Aid for Research on Priority Areas ‘Systems Genomics,’ ‘Real Molecular Theory’, and ‘Innovative nano-science,’ MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiki Komatsuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Li, C.B., Komatsuzaki, T. (2011). Extracting the Underlying Unique Reaction Scheme from a Single-Molecule Time Series. In: Sako, Y., Ueda, M. (eds) Cell Signaling Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9864-1_11

Download citation

Publish with us

Policies and ethics