Skip to main content

Single-Molecule Kinetic Analysis of Receptor Protein Tyrosine Kinases

  • Chapter
  • First Online:
Cell Signaling Reactions

Abstract

Signaling pathways mediated by receptor tyrosine kinases (RTKs) are among the most important pathways regulating various functions and behaviors in mammalian cells. Although many studies performed over several decades have revealed the molecular mechanisms underlying the cellular events regulated by these pathways, the overall structures of the pathways remain unclear, especially their quantitative properties. A technology has emerged that can potentially address these issues. Recent developments in optical microscopy and molecular biology allow us to visualize the behaviors of single RTK molecules and their association partners with fluorescent probes in living cells. Using the quantitative nature of these single-molecule measurements, we studied the signaling of epidermal growth factor (EGF) and nerve growth factor (NGF), both of which stimulate RTK systems. Single-molecule analyses revealed molecular dynamics and kinetics that cannot be demonstrated with conventional biochemical methods. These include the kinetic transitions of these receptors induced by ligand binding, signal amplification by the dynamic interactions between active and inactive receptors, downstream signaling with a memory effect exerted by the receptor molecule, and shifts in the motional modes of ligand-receptor complexes. These novel insights obtained from single-molecule studies suggest that detailed models of RTK signaling, which involve signal processing depend on protein dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batzer AG, Rotin D, Urena JM, Skolnik EY, Schlessinger J (1994) Hierarchy of binding sites for Grb2 Shc on the epidermal growth factor receptor. Mol Cell Biol 14:5192–5201

    PubMed  CAS  Google Scholar 

  2. Berkers JAM, Van Berger en Henegouwen PMP (1991) Three classes of epidermal growth factor receptors on HeLa cells. J Biol Chem 266:922–927

    PubMed  CAS  Google Scholar 

  3. Berridge MJ, Heslop JP, Irvine RF, Brown KD (1984) Inositol trisphosphate formation calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor. Biochem J 222:195–201

    PubMed  CAS  Google Scholar 

  4. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  Google Scholar 

  5. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN (2007) Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Sys Biol. doi:10.1038/msb4100188

    Google Scholar 

  6. Bishayee A, Beguinot L, Bishayee S (1999) Phosphorylation of tyrosine 992, 1068 and 1086 is required for conformational change of the human epidermal growth factor receptor C-terminal tail. Mol Biol Cell 10:525–536

    PubMed  CAS  Google Scholar 

  7. Brabyn CJ, Kleine LP (1995) EGF causes hyperproliferation and apoptosis in T51B cells: involvement of high and low affinity EGFR binding sites. Cell Signal 7:139–150

    Article  PubMed  CAS  Google Scholar 

  8. Bronfman FC, Tcherpakov M, Jovin TM, Fainzilber M (2003) Ligandinduced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome. J Neurosci 23:3209–3220

    PubMed  CAS  Google Scholar 

  9. Carpenter G, King L Jr, Cohen S (1978) Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 276:409–410

    Article  PubMed  CAS  Google Scholar 

  10. Carter RE, Sorkin A (1999) Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J Biol Chem 52:35000–35007

    Google Scholar 

  11. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D (1993) Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260:1338–1343

    Article  PubMed  CAS  Google Scholar 

  12. Cho HS, Leahy DJ (2002) Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297:1330–1333

    Article  PubMed  CAS  Google Scholar 

  13. Clayton AHA, Orchard SG, Nice EC, Posner RG, Burgess AW (2008) Predominance of activated EGFR higher-order oligomers on the cell surface. Growth Factors 26:316–324

    Article  PubMed  CAS  Google Scholar 

  14. Clayton AHA, Tavarnesi ML, Johns TG (2007) Unligated epidermal growth factor receptor forms higher order oligomers within microclusters on A431 cells that are sensitive to tyrosine kinase inhibitor binding. Biochemistry 46:4589–4597

    Article  PubMed  CAS  Google Scholar 

  15. Clayton AHA, Walker F, Orchard SG, Henderson C, Fuchs D, Rothacker J, Nice EC, Burgess AW (2005) Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-a multidimensional microscopy analysis. J Biol Chem 280:30392–30399

    Article  PubMed  CAS  Google Scholar 

  16. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem 237:1555–1562

    PubMed  CAS  Google Scholar 

  17. Cohen S, Levi-Montalcini R (1957) Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res 17:15–20

    PubMed  CAS  Google Scholar 

  18. Connolly JL, Seeley PJ, Greene LA (1987) Rapid regulation of neuronal growth cone shape surface morphology by nerve growth factor. Neurochem Res 12:861–868

    Article  PubMed  CAS  Google Scholar 

  19. Defize LH, Boonstra J, Meisenhelder J, Kruijer W, Tertoolen LG, Tilly BC, Hunter T, van Bergen en Henegouwen PM, Moolenaar WH, Henegouwen PM Van Bergen en, Moolenaar WH, De Laat SW (1989) Signal transduction by epidermal growth factor occurs through the subclass of high affinity receptors. J Cell Biol 109:2495–2507

    Article  PubMed  CAS  Google Scholar 

  20. Defize LHK, Arndt-Jovin DJ, Jovin TM, Boonstra J, Meisenhelder J, Hunter T, de Hey HT, de Laart SW (1988) A431 cell variants lacking the blood group A antigen display increased high affinity epidermal growth factor-receptor number, protein-tyrosine kinase activity receptor turnover. J Cell Biol 107:939–949

    Article  PubMed  CAS  Google Scholar 

  21. Delcroix JD, Valletta JS, Wu C, Hunt SJ, Kowal AS, Mobley WC (2003) NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39:69–84

    Article  PubMed  CAS  Google Scholar 

  22. Downward J, Parker P, Waterfield MD (1984) Autophosphorylation sites on the epidermal growth factor receptor. Nature 311:483–485

    Article  PubMed  CAS  Google Scholar 

  23. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA (1993) Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–51

    Article  PubMed  CAS  Google Scholar 

  24. Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA (2003) EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell 11:507–517

    Article  PubMed  CAS  Google Scholar 

  25. Ferrell JE Jr (1996) Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21:460–466

    Article  PubMed  CAS  Google Scholar 

  26. Flomenbom O, Velonia K, Loos D, Masuo S, Cotlet M, Engelborghs Y, Hofkens J, Rowan AE, Nolte RJ, Van der Auweraer M et al (2005) Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc Natl Acad Sci USA 102:2368–2372

    Article  PubMed  CAS  Google Scholar 

  27. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559

    Article  PubMed  CAS  Google Scholar 

  28. Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D (1993) Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363:88–92

    Article  PubMed  CAS  Google Scholar 

  29. Garrett T, McKern N, Lou M, Elleman T, Adams T, Lovrecz G, Zhu H, Walker F, Frenkel M, Hoyne P et al (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor. Cell 110:763–773

    Article  PubMed  CAS  Google Scholar 

  30. Gatzinsky KP, Haugland RP, Thrasivoulou C, Orike N, Budi-Santoso AW, Cowen T (2001) p75 and TrkA receptors are both required for uptake of NGF in adult sympathetic neurons: use of a novel fluorescent NGF conjugate. Brain Res 920:226–238

    Article  PubMed  CAS  Google Scholar 

  31. Graus-Porta D, Beerli RR, Daly JM, Hynes NE (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16:1647–1655

    Article  PubMed  CAS  Google Scholar 

  32. Grimes ML, Beattie E, Mobley WC (1997) A signaling organelle containing the nerve growth factor-activated receptor tyrosine kinase, TrkA. Proc Natl Acad Sci USA 94:9909–9914

    Article  PubMed  CAS  Google Scholar 

  33. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev 4:361–370

    CAS  Google Scholar 

  34. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086

    Article  PubMed  CAS  Google Scholar 

  35. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy – a concept for optical resolution improvement. J Opt Soc Am A 19:1599–1609

    Article  Google Scholar 

  36. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  PubMed  CAS  Google Scholar 

  37. Hendry IA, Stockel K, Thoenen H, Iversen LL (1974) The retrograde axonal transport of nerve growth factor. Brain Res 68:103–121

    Article  PubMed  CAS  Google Scholar 

  38. Hibino K, Shibata T, Yanagida T, Sako Y (2009) A RasGTP-induced conformational change in C-RAF essential for accurate molecular recognition. Biophys J 97:1277–1287

    Article  PubMed  CAS  Google Scholar 

  39. Hibino K, Watanabe T, Kozuka J, Iwane AH, Okada T, Kataoka T, Yanagida T, Sako Y (2003) Single- and multiple-molecule dynamics of the signaling from H-Ras to c-Raf1 visualized on the plasma membrane of living cells. Chem Phys Chem 4:748–753

    PubMed  CAS  Google Scholar 

  40. Ichinose J, Murata M, Yanagida T, Sako Y (2004) EGF signaling amplification induced by dynamic clustering of EGFR. Biochem Biophys Res Commun 324:1143–1149

    Article  PubMed  CAS  Google Scholar 

  41. Kamer AR, Sacks PG, Vladutiu A, Liebow C (2004) EGF mediates multiple signals: dependence on the conditions. Int J Mol Med 13:143–147

    PubMed  CAS  Google Scholar 

  42. Kano F, Sako Y, Tagaya M, Yanagida T, Murata M (2000) Reconstitution of brefeldin A-induced golgi tubulation fusion with the endoplasmic reticulum in semi-intact chinese hamster ovary cells. Mol Biol Cell 11:3073–3087

    PubMed  CAS  Google Scholar 

  43. Kasaian MT, Jacobberger JW, Neet KE (1994) Flow cytometric analysis of fluorescein-labeled nerve growth factor binding to A875 human melanoma cells. Exp Cell Res 210:77–85

    Article  PubMed  CAS  Google Scholar 

  44. Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG (1991) PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 65:435–441

    Article  PubMed  CAS  Google Scholar 

  45. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24:954–956

    Article  PubMed  CAS  Google Scholar 

  46. Koizumi S, Contreras ML, Matsuda Y, Hama T, Lazarovici P, Guroff G (1988) K-252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J Neurosci 8:715–721

    PubMed  CAS  Google Scholar 

  47. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–196

    Article  PubMed  CAS  Google Scholar 

  48. Kucik DF, Elson EL, Sheetz MP (1999) Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys J 76:314–322

    Article  PubMed  CAS  Google Scholar 

  49. Lalli G, Schiavo G (2002) Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin neurotrophin receptor p75NTR. J Cell Biol 156:233–239

    Article  PubMed  CAS  Google Scholar 

  50. Levi A, Shechter Y, Neufeld EJ, Schlessinger J (1980) Mobility, clustering, and transport of nerve growth factor in embryonal sensory cells in a sympathetic neuronal cell line. Proc Natl Acad Sci USA 77:3469–3473

    Article  PubMed  CAS  Google Scholar 

  51. Levi-Montalcini R (1982) Developmental neurobiology the natural history of nerve growth factor. Annu Rev Neurosci 5:341–362

    Article  PubMed  CAS  Google Scholar 

  52. Li N, Batzer A, Daly R, Yajnik V, Skolnik E, Chardin P, Bar-Sagi D, Margolis B, Schlessinger J (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363:85–88

    Article  PubMed  CAS  Google Scholar 

  53. Lommerse PHM, Snaar-Jagalska BE, Spaink HP, Schmidt T (2005) Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci 118:1799–1809

    Article  PubMed  CAS  Google Scholar 

  54. Majerus PW, Connolly TM, Deckmyn H, Ross TS, Bross TE, Ishii H, Bansal VS, Wilson DB (1986) The metabolism of phosphoinositide-derived messenger molecules. Science 234:1519–1526

    Article  PubMed  CAS  Google Scholar 

  55. Martin-Fernandez M, Clarke DT, Tobin MJ, Jones SV, Jones GR (2002) Preformed oligomeric epidermal growth factor receptors undergo an ectodomain structure change during signaling. Biophys J 82:2415–2427

    Article  PubMed  CAS  Google Scholar 

  56. Michikawa T, Miyawaki A, Furuichi T, Mikoshiba K (1996) Inositol 1,4,5-trisphosphate receptors calcium signaling. Crit Rev Neurobiol 10:39–55

    PubMed  CAS  Google Scholar 

  57. Mineo C, Gill GN, Gerson R (1999) Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem 274:30636–30643

    Article  PubMed  CAS  Google Scholar 

  58. Moriki T, Maruyama H, Maruyama IN (2001) Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J Mol Biol 311:1011–1026

    Article  PubMed  CAS  Google Scholar 

  59. Morimatsu M, Takagi H, Ota KG, Iwamoto R, Yanagida T, Sako Y (2007) Multiple-state reactions between the epidermal growth factor receptor Grb2 as observed using single-molecule analysis. Proc Natl Acad Sci USA 104:18013–18018

    Article  PubMed  Google Scholar 

  60. Nagashima T, Shimodaira H, Ide K, Nakakuki T, Tani Y, Takahashi K, Yumoto N, Hatakeyama M (2007) Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. J Biol Chem 282:4045–4056

    Article  PubMed  CAS  Google Scholar 

  61. Nishizuka Y (1984) Turnover of inositol phospholipids signal transduction. Science 225:1365–1370

    Article  PubMed  CAS  Google Scholar 

  62. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. doi:10.1038/msb4100014

    PubMed  Google Scholar 

  63. Ogiso H, Ishitani R, Nureki O, Fuakai S, Yamanaka M, Kim J-H, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor receptor extracellular domains. Cell 110:775–787

    Article  PubMed  CAS  Google Scholar 

  64. Riedel H, Dull TJ, Schlessinger J, Ullrich A (1986) A chimeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature 324:68–70

    Article  PubMed  CAS  Google Scholar 

  65. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363:83–85

    Article  PubMed  CAS  Google Scholar 

  66. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  PubMed  CAS  Google Scholar 

  67. Sako Y, Hibino K, Miyauchi T, Miyamoto Y, Ueda M, Yanagida T (2000) Single-molecule imaging of signaling molecules in living cells. Single Mol 1:159–163

    Article  CAS  Google Scholar 

  68. Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signaling on the surface of living cells. Nat Cell Biol 2:168–172

    Article  PubMed  CAS  Google Scholar 

  69. Santini F, Keen JH (1996) Endocytosis of activated receptors clathrincoated pit formation: deciphering the chicken or egg relationship. J Cell Biol 132:1025–1036

    Article  PubMed  CAS  Google Scholar 

  70. Schlessinger J (1988) Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13:443–447

    Article  PubMed  CAS  Google Scholar 

  71. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  72. Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  PubMed  Google Scholar 

  73. Shao Y, Akmentin W, Toledo-Aral JJ, Rosenbaum J, Valdez G, Cabot JB, Hilbush BS, Halegoua S (2002) Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J Cell Biol 157:679–691

    Article  PubMed  CAS  Google Scholar 

  74. Shibata SC, Hibino K, Mashimo T, Yanagida T, Sako Y (2006) Formation of signal transduction complexes during immobile phase of NGFR movements. Biochem Biophys Res Commun 342:316–322

    Article  PubMed  CAS  Google Scholar 

  75. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104:20308–20313

    Article  PubMed  Google Scholar 

  76. Simson R, Sheets ED, Jacobson K (1995) Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J 69:989–993

    Article  PubMed  CAS  Google Scholar 

  77. Stout AL, Axelrod D (1989) Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl Opt 28:5237–5242

    Article  PubMed  CAS  Google Scholar 

  78. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    Article  PubMed  CAS  Google Scholar 

  79. Sutter A, Riopelle RJ, Harris-Warrick RM, Shooter EM (1979) Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem 254:5972–5982

    PubMed  CAS  Google Scholar 

  80. Szabó A, Horváth G, Szöllösi J, Nagy P (2008) Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 95:2086–2096

    Article  PubMed  CAS  Google Scholar 

  81. Tani T, Miyamoto Y, Fujimori KE, Taguchi T, Yanagida T, Sako Y, Harada Y (2005) Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis. J Neurosci 25:2181–2191

    Article  PubMed  CAS  Google Scholar 

  82. Teramura Y, Ichinose J, Takagi H, Nishida K, Yanagida T, Sako Y (2006) Single-molecule analysis of epidermal growth factor binding on the surface of living cells. EMBO J 25:4215–4222

    Article  PubMed  CAS  Google Scholar 

  83. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  PubMed  CAS  Google Scholar 

  84. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235:47–53

    Article  PubMed  CAS  Google Scholar 

  85. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y (1996) A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16:5276–5287

    PubMed  CAS  Google Scholar 

  86. Uyemura T, Takagi H, Yanagida T, Sako Y (2005) Single-molecule analysis of epidermal growth factor signaling that leads to ultrasensitive calcium response. Biophys J 88:3720–3730

    Article  PubMed  CAS  Google Scholar 

  87. van Bergen en Henegouwen PM, den Hartigh JC, Romeyn P, Verkleij AJ, Boonstra J (1992) The epidermal growth factor receptor is associated with actin filaments. Exp Cell Res 199:90–97

    Article  PubMed  Google Scholar 

  88. Vrljic M, Nishimura SY, Brasselet S, Moerner WE, McConnell HM (2002) Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J 83:2681–2692

    Article  PubMed  CAS  Google Scholar 

  89. Wahl MI, Nishibe S, Kim JW, Kim H, Rhee SG, Carpenter G (1990) Identification of two epidermal growth factor-sensitive tyrosine phosphorylation sites of phospholipase C-gamma in intact HSC-1 cells. J Biol Chem 265:3944–3948

    PubMed  CAS  Google Scholar 

  90. Webb SED, Roberts SK, Needham SR, Tynan CJ, Rolfe DJ, Winn MD, Clarke DT, Barraclough R, Martin-Fernandez ML (2008) Single-molecule imaging and fluorescence lifetime imaging microscopy show different structures for high- and low-affinity epidermal growth factor receptors in A431 cells. Biophys J 94:803–819

    Article  PubMed  CAS  Google Scholar 

  91. Xiao Z, Ma X, Jiang Y, Zhao Z, Lai B, Liao J, Yue J, Fang X (2008) Single-molecule study of lateral mobility of epidermal growth factor receptor 2/HER2 on activation. J Phys Chem B 112:4140–4145

    Article  PubMed  CAS  Google Scholar 

  92. Xiao Z, Zhang W, Yang Y, Xu L, Fang X (2008) Single-molecule diffusion study of activated EGFR implicates its endocytic pathway. Biochem Biophys Res Commun 369:730–734

    Article  PubMed  CAS  Google Scholar 

  93. Yarden Y, Schlessinger J (1987) Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26:1443–1451

    Article  PubMed  CAS  Google Scholar 

  94. Yarden Y, Schlessinger J (1987) Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26:1434–1442

    Article  PubMed  CAS  Google Scholar 

  95. Yu C, Hale J, Ritchie K, Prasad NK, Irudayaraj J (2009) Receptor overexpression or inhibition alters cell surface dynamics of EGF-EGFR interaction: new insights from real-time single molecule analysis. Biochem Biophys Res Commun 378:376–382

    Article  PubMed  CAS  Google Scholar 

  96. Yu X, Sharma KD, Takahashi T, Iwamoto R, Mekada E (2002) Ligand-independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand-induced EGFR signaling. Mol Biol Cell 13:2547–2557

    Article  PubMed  CAS  Google Scholar 

  97. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Hiroaki Takagi, Tomomi Tani, Tatsuo Shibata, Masahiro Ueda, Toshio Yanagida, and members of our laboratory for their collaboration, continual encouragement, and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Hiroshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Hiroshima, M., Sako, Y. (2011). Single-Molecule Kinetic Analysis of Receptor Protein Tyrosine Kinases. In: Sako, Y., Ueda, M. (eds) Cell Signaling Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9864-1_1

Download citation

Publish with us

Policies and ethics