Repeat Station Activities

Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 5)

Abstract

A repeat station is a site whose position is accurately known and where accurate measurements of the geomagnetic field vector are made at regular intervals in order to provide information about the secular variation of the geomagnetic field. In this chapter we begin by giving a brief history of the development of repeat station networks. We then describe the instruments used to make measurements at a repeat station. These include fixing the position of the station, finding the direction of true north and measuring the components of the geomagnetic field. Emphasis is given to techniques and instruments that are in current use. We next discuss the procedures that are used to reduce the measurements to a usable form and consider the uses to which the reduced data are put. Finally, we discuss the continued importance of such data in the present era of satellite geomagnetic surveys.

Keywords

repeat stations measurement techniques instrumentation geomagnetic field secular variation data reduction procedures 

References

  1. Alexandrescu M, Courtillot V, Le Mouël J-L (1996) Geomagnetic field direction in Paris since the mid-sixteenth century. Phys Earth Planet Inter 98:321–360CrossRefGoogle Scholar
  2. Barraclough DR (1995) Observations of the Earth’s magnetic field made in Edinburgh from 1670 to the present day. Trans R Soc Edinb Earth Sci 85:239–252Google Scholar
  3. Barraclough DR, De Santis A (1997) Some possible evidence for a chaotic geomagnetic field from observational data. Phys Earth Planet Inter 99:207–220CrossRefGoogle Scholar
  4. Cafarella L, De Santis A, Meloni A (1992) Secular variation from historical geomagnetic field measurements. Phys Earth Planet Inter 73:206–221CrossRefGoogle Scholar
  5. Cafarella L, De Santis A, Meloni A (1993) Il catalogo geomagnetico storico italiano. Istituto Nazionale di Geofisica, RomeGoogle Scholar
  6. Cawood J (1979) The magnetic crusade: science and politics in early Victorian Britain. Isis 70:493–518CrossRefGoogle Scholar
  7. De Santis A, Dominici G (2006) Magnetic repeat station network in Italy and magnetic measurements at heliports and airports. In: Rasson, Delipetrov (eds) (2006), pp 259–270Google Scholar
  8. De Santis A, Tozzi R (2006) Nonlinear techniques for short term prediction of the geomagnetic field and its secular variation. In: Rasson, Delipetrov (eds) (2006), pp 281–289Google Scholar
  9. De Santis A, Barraclough DR, Tozzi R (2002) Nonlinear variability of the recent geomagnetic field. Fractals 10:297–303CrossRefGoogle Scholar
  10. De Santis A, Arora B, McCreadie H, (eds) (2009) Geomagnetic measurements in remote regions. Ann Geophys 52(1):special issueGoogle Scholar
  11. Duma G (2009) Magnetic repeat station measurements in Europe. MagNetE-Report, Update 2009-1, pp 25Google Scholar
  12. Dunlop J (1830) An account of observations made in Scotland on the distribution of the magnetic intensity. Trans R Soc Edinb 12:1–65Google Scholar
  13. Dye DW (1928) A magnetometer for the measurement of the Earth’s vertical intensity in c.g.s. measure. Proc R Soc Lond A117:434–458Google Scholar
  14. Forbes AJ (1987) General instrumentation. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic, London and Orlando, FloridaGoogle Scholar
  15. Gauss CF (1833) Intensitas vis magneticae terrestris ad mensuram absolutam revocata. Dieterich, GöttingenGoogle Scholar
  16. Gellibrand H (1635) A discourse mathematical on the variation of the magnetical needle. William Jones, LondonGoogle Scholar
  17. Good GA (2007) Carnegie Institution of Washington, Department of Terrestrial Magnetism. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, DordrechtGoogle Scholar
  18. Haines GV (1985) Spherical cap harmonic analysis. J Geophys Res 90:2583–2591CrossRefGoogle Scholar
  19. Herzog DC (2009) The effects of missing data on mean hourly values. Proc. XIIIth IAGA Workshop. In: Love JJ (ed) Golden CO, Open File Report 2009–1226, pp 116–126Google Scholar
  20. Hulot G, Olsen N, Thébault E, Hemant K (2009) Crustal concealing of small-scale core-field secular variation. Geophys J Int 177:361–366CrossRefGoogle Scholar
  21. Korepanov V (2006) Geomagnetic instrumentation for repeat station survey. In: Rasson, Delipetrov (eds) (2006), pp 145–166Google Scholar
  22. Korte M, Fredow M (2001) Magnetic repeat station survey of Germany 1999/2000. Sci Tech Rep STR01/04, Geoforschungszentrum, PotsdamGoogle Scholar
  23. Korte M, Thébault E (2007) Geomagnetic repeat station crustal biases and vectorial anomaly maps for Germany. Geophys J Int 170:81–92CrossRefGoogle Scholar
  24. Korte M, Mandea M, Kotzé P, Nahayo E, Pretorius B (2007) Improved observations at the southern African geomagnetic repeat station network. S Afr J Geol 110:175–186CrossRefGoogle Scholar
  25. Kreil K (1845) Magnetische und geographische Orstbestimmungen in Böhmen in den Jahren 1843–1845. Abh. K. Böhm. Ges. Wiss. Series 5 vol 4Google Scholar
  26. La Cour D (1936) Le quartz-magnétomètre QHM. Commun. Magn Dan Meteorol Inst 15Google Scholar
  27. La Cour D (1942) The magnetometric zero balance (BMZ). Commun Magn Dan Meteorol Inst 19Google Scholar
  28. Lamont J (1854) Magnetische Karten von Deutschland und Bayern, nach den neuen Bayerischen und Österreichischen Messungen, unter Benützung einiger älterer Bestimmungen. MünchenGoogle Scholar
  29. Lefroy JH (1883) Diary of a magnetic survey of a portion of the Dominion of Canada chiefly in the North-Western territories executed in the years 1842–1844. LondonGoogle Scholar
  30. Loubser L, Newitt L (2009) Guide for calibrating a compass swing base, International Association of Geomagnetism and Aeronomy, Hermanus, pp 35Google Scholar
  31. Love JJ (2009) Missing data and the accuracy of magnetic-observatory hour means. Ann Geophys 27:3601–3610CrossRefGoogle Scholar
  32. McEwin AJ (1993) The repeat station network and estimation of secular variation in Australian region. Explor Geophys 24:87–88CrossRefGoogle Scholar
  33. Malin SRC (1987) Historical introduction to geomagnetism. In: Jacobs J (ed) Geomagnetism, vol 1. Academic, London and Orlando, pp 1–49Google Scholar
  34. Malin SRC, Bullard E (1981) The direction of the Earth’s magnetic field at London, 1570–1975. Philos Trans R Soc Lond A299:357–423Google Scholar
  35. Mandea M (2002) 60, 59, 58, … How many minutes for a reliable hourly mean? Proceedings of Xth IAGA Workshop, Hermanus, pp 112–120Google Scholar
  36. Mandea M, Dormy M (2003) Asymmetric behaviour of the magnetic dip poles. Earth Planets Space 55:153–157Google Scholar
  37. Marsal S, Curto JJ (2009) A new approach to the hourly mean computation problem when dealing with missing data. Earth Planets Space 61:945–956Google Scholar
  38. Matzka J, Olsen N, Fox Maule C, Pedersen LW, Berarducci AM, Macmillan S (2009) Geomagnetic observations on Tristan da Cunha, South Atlantic Ocean. Ann Geophys 52:97–105Google Scholar
  39. Matzka J, Chulliat A, Mandea M, Finlay C, Qamili E (2010) Direct measurements: from ground to satellites. Space Sci Rev In pressGoogle Scholar
  40. Mohr PJ, Taylor BN, Newell DB (2008) CODATA recommended values of the fundamental physical constants: 2006. J Phys Chem Ref Data 37:1187CrossRefGoogle Scholar
  41. Newitt LR (2009) The effects of missing data on the computation of hourly mean values and ranges. Proceedings of XIIIth IAGA Workshop. In: Love JJ (ed.), Golden CO, Open File Report 2009–1226, pp 194–201Google Scholar
  42. Newitt LR, Barton CE, Bitterly J (1996) Guide for magnetic repeat station surveys. International Association of Geomagnetism and Aeronomy, Boulder, ColoradoGoogle Scholar
  43. Newitt LR, Chulliat A, Orgeval J-J (2009) Location of the North Magnetic Pole in April 2007. Earth Planets Space 61:703–710Google Scholar
  44. Overhauser AW (1953) Polarisation of nuclei in metals. Phys Rev 92:411–415CrossRefGoogle Scholar
  45. Rasson JL, T Delipetrov (eds) (2006) Geomagnetics for aeronautical safety: a case study in and around the Balkans. Nato Advanced Study Science Series, Springer, DordrechtGoogle Scholar
  46. Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159:521–547CrossRefGoogle Scholar
  47. Sabine E (1839) Report on the magnetic isoclinal and isodynamic lines in the British Islands. Eighth Rep Br Assoc Adv Sci 49–196Google Scholar
  48. Sabine E (1862) Report on the repetition of the magnetic survey of England, made at the request of the General Committee of the British Association. Rep Br Assoc Adv Sci 1861:250–279Google Scholar
  49. Sabine E (1870) Contributions to terrestrial magnetism No. XII. The magnetic survey of the British Islands, reduced to the epoch 1842.5. Philos Trans R Soc Lond 160:265–275CrossRefGoogle Scholar
  50. Schlagintweit H de, Schlagintweit A de, Schlagintweit R de (1861) Results of a scientific mission to India and High Asia undertaken between the years MDCCCLIV, and MDCCCLVIII, vol I. by order of the Court of Directors of the Honourable East India Company, Leipzig and LondonGoogle Scholar
  51. Schott J, Linthe HJ (2007) The hourly mean computation problem revisited. Publ Inst Geophys Pol Acad Sci. C-99:398Google Scholar
  52. Shanahan TJG, Macmillan S (2009) Status of Edinburgh WDC global survey data. Presentation at June 2009 MagNetE Workshop, HelsinkiGoogle Scholar
  53. Smith FE (1923) On an electromagnetic method for the measurement of the horizontal intensity of the Earth’s magnetic field. Philos Trans R Soc Lond A223:175–200Google Scholar
  54. Thébault E, Schott JJ, Mandea M (2006) Revised spherical cap harmonic analysis (R-SCHA): validation and properties. J Geophys Res 111:B01102. doi:10.1029/2005JB003836CrossRefGoogle Scholar
  55. Vitale S, De Santis A, Di Mauro D, Cafarella L, Palangio P, Beranzoli L, Favali P (2009) GEOSTAR deep seafloor missions : magnetic data analysis. Ann Geophy 52:57–64Google Scholar
  56. Walker GW (1919) The magnetic re-survey of the British Isles for the epoch January 1, 1915. Philos Trans R Soc Lond A219:1–135Google Scholar
  57. Whiston W (1721) The Longitude and Latitude Found by the Inclinatory or Dipping-needle; Wherein the Laws of Magnetism are also discover’d. To which is prefix’d, An Historical Preface; and to which is subjoin’d, Mr. Robert Norman’s New Attractive, or Account of the first Invention of the Dipping Needle. J Senex and W Taylor, LondonGoogle Scholar
  58. Wienert KA (1970) Notes on geomagnetic observatory and survey practice. UNESCO, BrusselsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Formerly with British Geological Survey (now retired)EdinburghScotland
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia (INGV)RomeItaly

Personalised recommendations