Haloorganics in Temperate Forest Ecosystems: Sources, Transport and Degradation

  • Nicholas Clarke
  • Milan Gryndler
  • Hans-Holger Liste
  • Reiner Schroll
  • Peter Schröder
  • Miroslav Matucha
Part of the Plant Ecophysiology book series (KLEC, volume 8)


The halogens, most importantly fluorine, chlorine, bromine, and iodine, occur in nature as ions and compounds, including organic compounds. Halogenated organic substances (haloorganics) were long considered purely anthropogenic products; however, they are in addition a commonly occurring and important part of natural ecosystems. Natural haloorganics are produced largely by living organisms, although abiotic production occurs as well. A survey is given of processes of formation, transport, and degradation of haloorganics in temperate and boreal forests, predominantly in Europe. More work is necessary in order to understand the environmental impact of haloorganics in temperate and boreal forest soils. This includes both further research, especially to understand the key processes of formation and degradation of halogenated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on haloorganics, as management can be used to produce desired effects.


Soil Organic Matter Forest Soil Phenol Oxidase Activity Methyl Chloride Chlorinate Pesticide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aamlid D, Horntvedt R (2002) Sea salt impact on forests in western Norway. Forestry 75:171–178CrossRefGoogle Scholar
  2. Alexander M (1995) How toxic are toxic chemicals in soils? Environ Sci Technol 29:2713–2717CrossRefGoogle Scholar
  3. Alexander M (1999) Biodegradation and bioremediation. Academic, San Diego, CA, p 453Google Scholar
  4. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779PubMedCrossRefGoogle Scholar
  5. Anderson TA, Walton BT (1995) Comparative fate of [14C]trichloroethylene in the root zone of plants from a former solvent disposal site. Environ Toxicol Chem 14:2041–2047Google Scholar
  6. Asplund G (1995) Origin and occurrence of halogenated organic matter in soil. In: Grimvall A, de Leer EWB (eds) Naturally-produced organohalogens. Kluwer, Dordrecht, pp 35–48Google Scholar
  7. Asplund G, Grimvall A (1991) Organohalogens in nature, more widespread than previously assumed. Environ Sci Technol 25:1346–1350CrossRefGoogle Scholar
  8. Bailey RA, Clark HM, Ferris JP, Krause S, Strong RL (2002) Chemistry of the environment, 2nd edn. Academic, New YorkGoogle Scholar
  9. Bardyshev II, Ya G, Zen’ko RI (1970) Properties and chemical composition of colophony and turpentine produced from Bulgarian oleoresin from Pinus sylvestris and Pinus nigra. Biologiya 8:113–120Google Scholar
  10. Barriuso E, Houot S (1996) Rapid mineralization of the s-triazine ring of atrazine in soils in relation to soil management. Soil Biol Biochem 28:1341–1348CrossRefGoogle Scholar
  11. Bastviken D, Sandén P, Svensson T, Ståhlberg C, Magounakis M, Öberg G (2006) Chloride retention and release in a boreal forest soil: effects of soil water residence time and nitrogen and chloride loads. Environ Sci Technol 40:2977–2982PubMedCrossRefGoogle Scholar
  12. Bastviken D, Thomsen F, Svensson T, Karlsson S, Sandén P, Shaw G, Matucha M, Öberg G (2007) Chloride retention in forest soil by microbial uptake and by natural formation of organochlorines. Geochim Cosmochim Acta 71:3182–3192CrossRefGoogle Scholar
  13. Belis CA, Offenthaler I, Uhl M et al (2009) A comparison of Alpine emissions to forest soil and spruce needle loads for persistent organic pollutants (POPs). Environ Pollut 157:3185–3191PubMedCrossRefGoogle Scholar
  14. Bleeker A, Draaijers G, van der Veen D, Erisman JW, Möls H, Fonteijn P, Geusebroek M (2003) Field intercomparison of throughfall measurements performed within the framework of the Pan European intensive monitoring program of EU/ICP forest. Environ Pollut 125:123–138PubMedCrossRefGoogle Scholar
  15. Boerner REJ, Brinkman JA (2003) Fire frequency and soil enzyme activity in southern Ohio ­oak-hickory forests. Appl Soil Ecol 23:137–146CrossRefGoogle Scholar
  16. Boerner REJ, Brinkman JA, Smith A (2005) Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biol Biochem 37:1419–1426CrossRefGoogle Scholar
  17. Bollag JM (1972) Biochemical transformation of pesticides by soil fungi. CRC Crit Rev Microbiol 2:35–58PubMedCrossRefGoogle Scholar
  18. Carpenter LJ, Wevill DJ, O’Doherty S, Spain G, Simmonds PG (2005) Atmospheric bromoform at Mace Head, Ireland: seasonality and evidence for a peatland source. Atmos Chem Phys 5:2927–2934CrossRefGoogle Scholar
  19. Clarke N, Fuksová K, Gryndler M, Lachmanová Z, Liste H-H, Rohlenová J, Schroll R, Schröder P, Matucha M (2009) The formation and fate of chlorinated organic substances in temperate and boreal forest soils. ESPR 16:127–143PubMedCrossRefGoogle Scholar
  20. Couch RW, Gramlich JV, Davis DE, Funderburk HH Jr (1965) The metabolism of atrazine and simazine by soil fungi. Proc South Weed Conf 18:623–631Google Scholar
  21. Cox ML, Sturrock GA, Fraser PJ, Siems ST, Krummel PB, O’Doherty S (2003) Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania, 1998–2000. J Atmos Chem 45:79–99CrossRefGoogle Scholar
  22. Crawford RL, Hess TF, Paszczynski A (2004) Combined biological and abiological degradation of xenobiotic compounds. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer, Heidelberg, pp 251–278Google Scholar
  23. de Jong E, Field JA (1997) Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes. Ann Rev Microbiol 51:375–414CrossRefGoogle Scholar
  24. de Wever H, Cole JR, Fettig MR, Hogan DA, Tiedje JM (2000) Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl Environ Microbiol 66:2297–2301PubMedCrossRefGoogle Scholar
  25. Di Guardo A, Nizzetto L, Infantino A, Colombo I, Saporiti E, Jones KC (2008) Field derived accumulation and release kinetics of DDTs in plants. Chemosphere 72:1497–1503PubMedCrossRefGoogle Scholar
  26. Entry JA, Emmingham WH (1996) Influence of vegetation on microbial degradation of atrazine and 2, 4-dichlorophenoxyacetic acid in riparian soils. Can J Soil Sci 76:101–106Google Scholar
  27. Erisman JW, Möls H, Fonteijn P, Geusebroek M, Draaijers G, Bleeker A, van der Veen D (2003) Field intercomparison of precipitation measurements performed within the framework of the Pan European intensive monitoring program of EU/ICP forest. Environ Pollut 125:139–155PubMedCrossRefGoogle Scholar
  28. Fahimi IJ, Keppler F, Schöler HF (2003) Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 52:513–520PubMedCrossRefGoogle Scholar
  29. Ferrari RP, Laurenti E, Trotta F (1999) Oxidative 4-dechlorination of 2, 4, 6-trichlorophenol ­catalyzed by horseradish peroxidase. J Biol Inorg Chem 4:232–237PubMedCrossRefGoogle Scholar
  30. Field JA, Sierra R (2003) Review of scientific literature on chlorination and dechlorination of key chlorinated compounds. 9th Quarterly Report, EurochlorGoogle Scholar
  31. Fish KM, Principe JM (1994) Biotransformations of Arochlor 1242 in Hudson River Test Tube Microcosms. Appl Environ Microbiol 60:4289–4296PubMedGoogle Scholar
  32. Fritsche W (1998) Umwelt-Mikrobiologie. Gustav Fischer Verlag, Jena, p 252Google Scholar
  33. Fulthorpe RR, Rhodes AN, Tiedje JM (1996) Pristine soils mineralize 3-chlorobenzoate and 2, 4-dichlorophenoxyacetate via different microbial populations. Appl Environ Microbiol 62:1159–1166PubMedGoogle Scholar
  34. Fulthorpe RR, Schofield LN (1999) A comparison of the ability of forest and agricultural soils to mineralize chlorinated aromatic compounds. Biodegradation 10:235–244PubMedCrossRefGoogle Scholar
  35. Gawlik BM, Sotiriou N, Feicht EA, Schulte-Hostede S, Kettrup A (1997) Alternatives for the determination of the soil adsorption coefficient, Koc, of non-ionic organic compounds – a review. Chemosphere 34:2525–2551CrossRefGoogle Scholar
  36. Graedel TE, Keene WC (1996) The budget and cycle of Earth’s natural chlorine. Pure Appl Chem 68:1689–1697CrossRefGoogle Scholar
  37. Gribble GW (1998) The natural production of organochlorine compounds. CRC Press, Boca Raton, FL, pp 89–108Google Scholar
  38. Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297PubMedCrossRefGoogle Scholar
  39. Grimalt JO, van Drooge BL, Ribes A, Vilanova RM, Fernandez P, Appleby P (2004) Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere 54:1549–1561PubMedCrossRefGoogle Scholar
  40. Gryndler M, Rohlenová J, Kopecky J, Matucha M (2008) Chloride concentration affects soil microbial community. Chemosphere 71:1401–1408PubMedCrossRefGoogle Scholar
  41. Haas R, Tsivunchyk O, Steinbach K, Löw E, Scheibner K, Hofrichter M (2004) Conversion of adamsite (phenarsarzin chloride) by fungal manganese peroxidase. Appl Microbiol Biotechnol 63:564–566PubMedCrossRefGoogle Scholar
  42. Hammel KE, Tardone PJ (1988) The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27:6563–6568CrossRefGoogle Scholar
  43. Harnisch J, Frische M, Borchers R, Eisenhauer A, Jordan A (2000) Natural fluorinated organics in fluorite and rocks. Geophys Res Lett 27:1883–1886CrossRefGoogle Scholar
  44. Harper DB (1985) Halomethane from halide ion – a highly efficient fungal conversion of ­environmental significance. Nature 315:55–57CrossRefGoogle Scholar
  45. Haselmann KF, Laturnus F, Svensmark B, Grøn C (2000a) Formation of chloroform in spruce forest soil – results from laboratory incubation studies. Chemosphere 41:1769–1774PubMedCrossRefGoogle Scholar
  46. Haselmann KF, Ketola RA, Laturnus F, Lauritsen FR, Grøn C (2000b) Occurrence and formation of chloroform at Danish forest sites. Atmos Environ 43:187–193CrossRefGoogle Scholar
  47. Haselmann KF, Laturnus F, Grøn C (2002) Formation of chloroform in soil. A year-round study at a Danish spruce forest site. Water Air Soil Pollut 139:35–41CrossRefGoogle Scholar
  48. Haveraaen O (1981) The effect of cutting on water quantity and water quality from an East-Norwegian coniferous forest. Report from the Norwegian Forest Research Institute 36.7 p. 7Google Scholar
  49. Hellén H, Hakola H, Pystynen KH, Rinne J, Haapanala S (2006) C-2-C-10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences 3:167–174CrossRefGoogle Scholar
  50. Hewson WD, Hager LP (1979) Mechanism of the chlorination reaction catalyzed by horseradish peroxidase with chlorite. J Biol Chem 254:3175–3181PubMedGoogle Scholar
  51. Hjelm O, Johansson M-B, Öberg-Asplund G (1995) Organically bound halogens in coniferous forest soil – distribution pattern and evidence of in situ production. Chemosphere 30:2353–2364CrossRefGoogle Scholar
  52. Hjelm O, Borén H, Öberg G (1996) Analysis of halogenated organic compounds in coniferous forest soil from a Lepista nuda (wood blewitt) fairy ring. Chemosphere 32:1719–1728CrossRefGoogle Scholar
  53. Hoekstra EJ (2003) Review of concentrations and chemistry of trichloroacetate in the environment. Chemosphere 52:355–369PubMedCrossRefGoogle Scholar
  54. Hoekstra EJ, Verhagen FJM, Field JA, de Leer EWB, Brinkman UAT (1998a) Natural production of chloroform by fungi. Phytochemistry 49:91–98CrossRefGoogle Scholar
  55. Hoekstra EJ, de Leer EWB, Brinkman UAT (1998b) Natural formation of chloroform and brominated trihalomethanes in soil. Environ Sci Technol 32:3724–3729CrossRefGoogle Scholar
  56. Hoekstra EJ, de Leer EWB, Brinkman UAT (1999a) Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere 38:2875–2883CrossRefGoogle Scholar
  57. Hoekstra EJ, de Weerd H, de Leer EWB, Brinkman UAT (1999b) Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ Sci Technol 33:2543–2549CrossRefGoogle Scholar
  58. Hoekstra EJ, Duyzer JH, de Leer EWB, Brinkman UAT (2001) Chloroform – concentration ­gradients in soil air and atmospheric air, and emission fluxes from soil. Atmos Environ 35:61–70CrossRefGoogle Scholar
  59. Horstmann M, McLachlan MS (1998) Atmospheric deposition of semi-volatile organic ­compounds to two forest canopies. Atmos Environ 32:1799–1809CrossRefGoogle Scholar
  60. Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615–625CrossRefGoogle Scholar
  61. Howard KWF, Haynes J (1993) Groundwater contamination due to road de-icing chemicals – salt balance implications. Geosci Can 20:1–8Google Scholar
  62. Jaspers CJ, Ewbank G, McCarthy AJ, Penninckx MJ (2002) Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. J Appl Microbiol 92:127–133PubMedCrossRefGoogle Scholar
  63. Johansson E, Krantz-Rülcker C, Zhang BX, Öberg G (2000) Chlorination and biodegradation of lignin. Soil Biol Biochem 32:1029–1032CrossRefGoogle Scholar
  64. Johansson E, Ebenå G, Sandén P, Svensson T, Öberg G (2001) Organic and inorganic chlorine in Swedish spruce forest soil: influence of nitrogen. Geoderma 101:1–13CrossRefGoogle Scholar
  65. Johansson E, Sandén P, Öberg G (2003a) Spatial patterns of organic chlorine and chloride in Swedish forest soil. Chemosphere 52:391–397PubMedCrossRefGoogle Scholar
  66. Johansson E, Sandén P, Öberg G (2003b) Organic chlorine in deciduous and coniferous forest soils in southern Sweden. Soil Sci 168:347–355CrossRefGoogle Scholar
  67. Jordan A, Harnisch J, Borchers R, Guern F, Shinohara H (2000) Volcanogenic halocarbons. Environ Sci Technol 34:1122–1124CrossRefGoogle Scholar
  68. Kauffman SJ, Royer DL, Chang SB, Berner RA (2003) Export of chloride after clear-cutting in the Hubbard Brook sandbox experiment. Biogeochemistry 63:23–33CrossRefGoogle Scholar
  69. Kavanagh F, Hervey A, Robbins WJ (1952) Antibiotic substances from basidiomycetes. IX. Drosophila subatrata (Batsch ex Fr.) Quél. Proc Natl Acad Sci USA 38:555–560PubMedCrossRefGoogle Scholar
  70. Keppler F, Biester H (2003) Peatlands: a major sink of naturally formed organic chlorine. Chemosphere 52:451–453PubMedCrossRefGoogle Scholar
  71. Keppler F, Eiden R, Niedan V, Pracht J, Schöler HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403:298–301PubMedCrossRefGoogle Scholar
  72. Keppler F, Borchers R, Pracht J, Rheinberger S, Schöler HF (2002) Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36:2479–2483PubMedCrossRefGoogle Scholar
  73. Keppler F, Borchers R, Elsner P, Fahimi I, Pracht J, Schöler HF (2003) Formation of volatile iodinated alkanes in soil: results from laboratory studies. Chemosphere 52:477–483PubMedCrossRefGoogle Scholar
  74. Keppler F, Borchers R, Hamilton JTG, Kilian G, Pracht J, Schöler HF (2006) De novo formation of chloroethyne in soil. Environ Sci Technol 40:130–134PubMedCrossRefGoogle Scholar
  75. Kim E-J, Oh J-E, Chang Y-S (2003) Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci Tot Environ 311:177–189CrossRefGoogle Scholar
  76. Klages U, Lingens F (1979) Degradation of 4-chlorobenzoic acid by Nocardia species. FEMS Microbiol Lett 6:201–203CrossRefGoogle Scholar
  77. Kleja DB, Svensson M, Majdi H, Jansson P-E, Langvall O, Bergkvist B, Johansson M-B, Weslien P, Truusb L, Lindroth A, Ågren GI (2008) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry 89:7–25CrossRefGoogle Scholar
  78. Kosubová P, Grabic R, Holoubek I (2005) Toxaphene and other chlorinated pesticides in the Czech mountain and lowland forest ecosystems. Fresenius Environ Bull 14:160–166Google Scholar
  79. Krauss M, Wilcke WE, Zech W (2000) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as factor of different fate. Env Pollut 110:79–88CrossRefGoogle Scholar
  80. Lappin HM, Greaves MP, Slater JH (1985) Degradation of the herbicide mecoprop [2-(2-methyl-4chlorophenoxy)propionic acid] by a synergistic microbial community. Appl Environ Microbiol 49:429–433PubMedGoogle Scholar
  81. Laturnus F, Mehrtens G, Grøn C (1995) Haloperoxidase-like activity in spruce forest soil – a source of volatile halogenated organic compounds? Chemosphere 31:3709–3719CrossRefGoogle Scholar
  82. Laturnus F, Lauritsen FR, Grøn C (2000) Chloroform in a pristine aquifer system: toward an evidence of biogenic origin. Water Resour Res 36:2999–3009CrossRefGoogle Scholar
  83. Laturnus F, Haselmann KF, Borch T, Grøn C (2002) Terrestrial natural sources of trichloromethane (chloroform, CHCl3) – an overview. Biogeochemistry 60:121–139CrossRefGoogle Scholar
  84. Laturnus F, Fahimi I, Gryndler M, Hartmann A, Heal MR, Matucha M, Schöler HF, Schroll R, Svensson T (2005) Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil – challenges to understanding. ESPR 12:233–244PubMedCrossRefGoogle Scholar
  85. Laturnus F, Matucha M (2008) Chloride – a precursor in the formation of volatile organochlorines by forest plants? J Environ Radioact 99:119–125PubMedCrossRefGoogle Scholar
  86. Lead WA, Steinnes E, Bacon JR, Jones KC (1997) Polychlorinated biphenyls in UK and Norwegian soils: spatial and temporal trends. Sci Total Environ 193:229–236CrossRefGoogle Scholar
  87. Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342PubMedCrossRefGoogle Scholar
  88. Leri AC, Marcus MA, Myneni SCB (2007) X-ray spectromicroscopic investigation of natural organochlorines distribution in weathering plant material. Geochim Cosmochim Acta 71:5834–5846CrossRefGoogle Scholar
  89. Levanon D (1993) Roles of fungi and bacteria in the mineralization of the pesticides atrazine, alachlor, malathion and carbofuran in soil. Soil Biol Biochem 25:1097–1105CrossRefGoogle Scholar
  90. Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23–47CrossRefGoogle Scholar
  91. Louie TM, Mohn WW (1999) Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J Bacteriol 181:40–46PubMedGoogle Scholar
  92. Lovelock JE (1975) Natural halocarbons in the air and in the sea. Nature 256:193–194PubMedCrossRefGoogle Scholar
  93. Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW (2005) The biogeochemistry of ­chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry 72:191–232CrossRefGoogle Scholar
  94. Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548PubMedGoogle Scholar
  95. Matucha M, Forczek ST, Gryndler M, Uhlířová H, Fuksová K, Schröder P (2003a) Trichloroacetic acid in Norway spruce/soil-system. I. Biodegradation in soil. Chemosphere 50:303–309PubMedCrossRefGoogle Scholar
  96. Matucha M, Gryndler M, Forczek ST, Uhlířová H, Fuksová K, Schröder P (2003b) Chloroacetic acids in environmental processes. Environ Chem Lett 1:127–130CrossRefGoogle Scholar
  97. Matucha M, Gryndler M, Schröder P, Forczek ST, Uhlířová H, Fuksová K, Rohlenová J (2007) Chloroacetic acids – degradation intermediates of organic matter in forest soil. Soil Biol Biochem 39:382–385CrossRefGoogle Scholar
  98. Maxe L (ed) (1995) Effects of acidification on groundwater in Sweden. Report 4388, Swedish Environmental Protection Agency, SolnaGoogle Scholar
  99. McCulloch A (2002) Trichloroacetic acid in the environment. Chemosphere 47:667–686PubMedCrossRefGoogle Scholar
  100. McCulloch A (2003) Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere 50:1291–1308PubMedCrossRefGoogle Scholar
  101. McLachlan MS, Horstmann M (1998) Forests as filters of airborne organic pollutants: A model. Environ Sci Technol 32:413–420CrossRefGoogle Scholar
  102. McRae B, LaPara TM, Hozalski RM (2004) Biodegradation of haloacetic acids by bacterial enrichment cultures. Chemosphere 55:915–925PubMedCrossRefGoogle Scholar
  103. Meade T, D’Angelo EM (2005) [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers. Chemosphere 61:48–55PubMedCrossRefGoogle Scholar
  104. Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672PubMedCrossRefGoogle Scholar
  105. Milliken CE, Meier GP, Watts JEM, Sowers KR, May HD (2004) Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by Basidiomycete fungi. Appl Environ Microbiol 70:385–392PubMedCrossRefGoogle Scholar
  106. Moeckel C, Nizzetto L, Di Guardo A, Steinnes E, Freppaz M, Filippa G, Camporini P, Benner J, Jones KC (2008) Persistent organic pollutants in boreal and montane soil profiles: distribution, evidence of processes and implications for global cycling. Environ Sci Technol 42:8374–8380PubMedCrossRefGoogle Scholar
  107. Mohn WW (2004) Biodegradation and bioremediation of halogenated organic compounds. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer, Heidelberg, p 125 ffGoogle Scholar
  108. Monde K, Satoh H, Nakamura M, Tamura M, Takasugi M (1998) Organochlorine compounds from a terrestrial higher plant: structures and origin of chlorinated orcinol derivatives from diseased bulbs of Lilium maximowiczii. J Nat Prod 61:913–921PubMedCrossRefGoogle Scholar
  109. Morrison M, Schonbaum GR (1976) Peroxidase-catalyzed halogenation. Annu Rev Biochem 45:861–888PubMedCrossRefGoogle Scholar
  110. Müller G, Nkusi G, Schöler HF (1996) Natural organohalogens in sediments. J Prakt Chem/Chem Ztg 338:23–29CrossRefGoogle Scholar
  111. Munir IZ, Dordick JS (2000) Soybean peroxidase as an effective bromination catalyst. Enzyme Microb Technol 26:337–341PubMedCrossRefGoogle Scholar
  112. Myneni SCB (2002) Formation of stable chlorinated hydrocarbons in weathering plant material. Science 295:1039–1041PubMedCrossRefGoogle Scholar
  113. Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23:380–390PubMedCrossRefGoogle Scholar
  114. Neilson AH (1994) Organic chemicals in the aquatic environment: distribution, persistence, and toxicity. CRC Press, Boca Raton, FL, p 438Google Scholar
  115. Nizzetto L, Jones KC, Gramatica P, Papa E, Cerabolini B, Di Guardo A (2006) Accumulation of persistent organic pollutants in canopies of different forest types: Role of species composition and altitudinal-temperature gradient. Environ Sci Technol 40:6580–6586PubMedCrossRefGoogle Scholar
  116. Nizzetto L, Pastore C, Liu X, Camporini P, Stroppiana D, Herbert B, Boschetti M, Zhang G, Brivio PA, Jones KC, Di Guardo A (2008) Accumulation parameters and seasonal trends for PCBs in temperate and boreal forest plant species. Environ Sci Technol 42:5911–5916PubMedCrossRefGoogle Scholar
  117. Nizzetto L, Stroppiana D, Brivio PA, Boschetti M, Di Guardo A (2007) Tracing the fate of PCBs in forest ecosystems. J Environ Monit 9:542–549PubMedCrossRefGoogle Scholar
  118. Norrström A-C, Bergstedt E (2001) The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water Air Soil Pollut 127:281–299CrossRefGoogle Scholar
  119. Öberg G (1998) Chloride and organic chlorine in soil. Acta Hydrochem Hydrobiol 26:137–144CrossRefGoogle Scholar
  120. Öberg G (2002) The natural chlorine cycle – fitting the scattered pieces. Appl Microbiol Biotechnol 58:565–581PubMedCrossRefGoogle Scholar
  121. Öberg G, Grøn C (1998) Sources of organic halogens in spruce forest soil. Environ Sci Technol 32:1573–1579CrossRefGoogle Scholar
  122. Öberg G, Holm M, Sandén P, Svensson T, Parikka M (2005) The role of organic-matter-bound chlorine in the chlorine cycle: a case study of the Stubbetorp catchment, Sweden. Biogeochemistry 75:241–269CrossRefGoogle Scholar
  123. Öberg G, Johansen C, Grøn C (1998) Organic halogens in spruce forest throughfall. Chemosphere 36:1689–1701CrossRefGoogle Scholar
  124. Öberg G, Nordlund E, Berg B (1996) In situ formation of organically bound halogens during decomposition of Norway spruce litter – effects of fertilization. Can J For Res 26:1040–1048CrossRefGoogle Scholar
  125. Offenthaler I, Bassan R, Belis CA et al (2008) MONARPOP Technical Report, Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna, ISBN 3-902338-93-8Google Scholar
  126. Osborne RL, Raner GM, Hager LP, Dawson JH (2006) C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. J Am Chem Soc 128:1036–1037PubMedCrossRefGoogle Scholar
  127. Persson Y, Lundstedt S, Öberg L, Tysklind M (2007) Levels of chlorinated compounds (CPs, PCPPs, PCDEs, PCDFs and PCDDs) in soils at contaminated sawmill sites in Sweden. Chemosphere 66:234–242PubMedCrossRefGoogle Scholar
  128. Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11CrossRefGoogle Scholar
  129. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefGoogle Scholar
  130. Ramakrishna DM, Viraraghavan T (2005) Environmental impact of chemical deicers – a review. Water Air Soil Pollut 166:49–63CrossRefGoogle Scholar
  131. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146:405–413PubMedGoogle Scholar
  132. Rodstedth M, Ståhlberg C, Sandén P, Öberg G (2003) Chloride imbalances in soil lysimeters. Chemosphere 52:381–389PubMedCrossRefGoogle Scholar
  133. Rohlenová J, Gryndler M, Forczek ST, Fuksová K, Handová V, Matucha M (2009) Microbial chlorination of organic matter in forest soil: investigation using 36Cl-chloride and its ­methodology. Environ Sci Technol 43:3652–3655PubMedCrossRefGoogle Scholar
  134. Romanič SH, Krauthacker B (2006) Distribution of persistent organochlorine compounds in one-year and two-year-old pine needles. Bull Environ Contam Toxicol 77:143–148PubMedCrossRefGoogle Scholar
  135. Schöler HF, Keppler F (2003) Abiotic formation of organohalogens in the terrestrial environment. CHIMIA 57:33–34Google Scholar
  136. Schöler HF, Keppler F, Fahimi IJ, Niedan VW (2003) Fluxes of trichloroacetic acid between atmosphere, biota, soil, and groundwater. Chemosphere 52:339–354PubMedCrossRefGoogle Scholar
  137. Schöler HF, Nkusi G, Niedan VW, Müller G, Spitthoff B (2005) Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites. Chemosphere 60:1505–1512PubMedCrossRefGoogle Scholar
  138. Schröder P, Matucha M, Forczek ST, Uhlířová H, Fuksová K, Albrechtová J (2003) Uptake, translocation and fate of trichloroacetic acid in Norway spruce/soil system. Chemosphere 52:437–442PubMedCrossRefGoogle Scholar
  139. Schultz A, Jonas U, Hammer E, Schauer F (2001) Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 67:4377–4381PubMedCrossRefGoogle Scholar
  140. Scow KM, Hutson J (1992) Effect of diffusion and sorption on the kinetics of biodegradation: theoretical considerations. Soil Sci Soc Am J 56:119–127CrossRefGoogle Scholar
  141. Silk PJ, Lonergan GC, Arsenault TL, Boyle CD (1997) Evidence of natural organochlorine ­formation in peat bogs. Chemosphere 35:2865–2880CrossRefGoogle Scholar
  142. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130PubMedCrossRefGoogle Scholar
  143. Spain JC, Van Veld PA (1983) Adaption of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol 45:428–435PubMedGoogle Scholar
  144. Stupak I, Asikainen A, Jonsell M, Karltun E, Lunnan A, Mizaraite D, Pasanen K, Pärn H, Raulund-Rasmussen K, Röser D, Schröder M, Varnagiryte I, Vilkriste L, Callesen I, Clarke N, Gaitnieks T, Ingerslev M, Mandre M, Ozolincius R, Saarsalmi A, Armolaitis K, Helmisaari H-S, Indriksons A, Kairiukstis L, Katzensteiner K, Kukkola M, Ots K, Ravn HP, Tamminen P (2007) Sustainable utilisation of forest biomass for energy – possibilities and problems, policy, legislation, certification and recommendations. Biomass Bioenerg 31:666–684CrossRefGoogle Scholar
  145. Su Y, Wania F, Harner T, Lei YD (2007a) Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls and polycyclic aromatic hydrocarbons to a boreal deciduous forest. Environ Sci Technol 41:534–540PubMedCrossRefGoogle Scholar
  146. Su Y, Wania F, Lei YD, Harner T, Shoeib M (2007b) Temperature dependence of the air concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in a forest and a clearing. Environ Sci Technol 41:4655–4661PubMedCrossRefGoogle Scholar
  147. Svensson T, Sandén P, Bastviken D, Öberg G (2007) Chlorine transport in a small catchment in southeast Sweden during two years. Biogeochemistry 82:181–199CrossRefGoogle Scholar
  148. Tanaka F, Fukushima M, Kikuchi A, Yabuta H, Ichikawa H, Tatsumi K (2005) Influence of chemical characteristics of humic substances on the partition coefficient of a chlorinated dioxin. Chemosphere 58:1319–1326PubMedCrossRefGoogle Scholar
  149. Trofast J, Wickberg B (1977) Mycorrhizin A and chloromycorrhizin A, two antibiotics from a mycorrhizal fungus of Monotropa hypopytis L. Tetrahedron 33:875–879CrossRefGoogle Scholar
  150. Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric Basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581PubMedCrossRefGoogle Scholar
  151. UN-ECE (2006) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests,
  152. van de Pas BA, Jansen S, Dijkema C, Schraa G, de Vos WM, Stams AJM (2001) Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl Environ Microbiol 67:3958–3963PubMedCrossRefGoogle Scholar
  153. van Hees PAW, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol Biochem 34:1261–1272CrossRefGoogle Scholar
  154. van Pée K-H, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312PubMedCrossRefGoogle Scholar
  155. Vela S, Häggblom MM, Young LY (2002) Biodegradation of aromatic and aliphatic compounds by rhizobial species. Soil Sci 167:802–810CrossRefGoogle Scholar
  156. Verhagen FJM, Swarts HJ, Wijnberg JBPA, Field JA (1998a) Organohalogen production is a ubiquitous capacity among Basidiomycetes. Chemosphere 37:2091–2104CrossRefGoogle Scholar
  157. Verhagen FJM, Swarts HJ, Wijnberg JBPA, Field JA (1998b) Biotransformation of the major fungal metabolite 3, 5-dichloro-p-anisyl alcohol under anaerobic conditions and its role in formation of bis(3, 5-dichloro-4-hydroxyphenyl)methane. Appl Environ Microbiol 64:3225–3231PubMedGoogle Scholar
  158. Walton BT, Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microbiol 56:1012–1016PubMedGoogle Scholar
  159. Wigilius B, Allard B, Borén H, Grimvall A (1988) Determination of adsorbable organic halogens and their molecular weight distribution in surface water samples. Chemosphere 17:1985–1994CrossRefGoogle Scholar
  160. Winterton N (2000) Chlorine: the only green element – towards a wider acceptance of its role in natural cycles. Green Chem 2:173–225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nicholas Clarke
    • 1
  • Milan Gryndler
    • 2
  • Hans-Holger Liste
    • 3
  • Reiner Schroll
    • 4
  • Peter Schröder
    • 5
  • Miroslav Matucha
    • 6
  1. 1.Norwegian Forest and Landscape InstituteÅsNorway
  2. 2.Institute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
  3. 3.Centre for Cultivated CropsJulius Kühn-Institute (JKI) Federal ResearchBerlinGermany
  4. 4.Institute of Soil Ecology, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
  5. 5.Department of Microbe-Plant InteractionsGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
  6. 6.Institute of Experimental BotanyCzech Academy of SciencesPrague 4Czech Republic

Personalised recommendations