State-of-the-Art Chemical Analyses: Xenobiotics, Plant Proteomics, and Residues in Plant Based Products

  • Touradj SoloukiEmail author
  • Mohammad Ali Khalvati
  • Mahsan Miladi
  • Behrooz Zekavat
Part of the Plant Ecophysiology book series (KLEC, volume 8)


Utilizing modern analytical tools, “x-omics” approaches (e.g., genomics, metabolomics, proteomics, etc.), and data mining techniques for comprehensive characterization of plant metabolism of xenobiotics can enhance our ability to assess environmental impacts. However, a solid understanding of metabolic pathways at the molecular level is required for targeted exploitation of species-specific detoxifying abilities of various plants. Characterization of phytotoxic pathways and dynamic molecular interactions in biological systems requires a systematic approach that can merge data from multiple analytical techniques. In this chapter, a brief review on recent advances in analytical instruments, particularly high ­performance mass spectrometers (MS) and allied techniques, and their impact on integrative biological studies in plant proteomics and botany are provided. Moreover, the importance of sample preparation, analyte separation, and standardization techniques are discussed. The significance of data correlation from high throughput and high resolution MS, multistage MS (MSn), “bottom-up” and ­“top-down” proteomics, determination of various stress responses, and identification of post-translational modifications in plants are also discussed. The conclusions provide a summary of the current instrumental limitations and anticipated future directions and challenges in plant system biology studies.


Nuclear Magnetic Resonance Arbuscular Mycorrhizal Capillary Zone Electrophoresis Electron Capture Dissociation Mass Measurement Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Partial Financial support from the Institute for Therapeutic Discovery and United States Civilian Research Development Foundation (US CRDF) is gratefully acknowledged. Authors would like to thank Sabina Solouki for her assistance with the editing.


  1. Alguacil MM, Roldan A, Torres MP (2009) Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ Microbiol 11(10):2649–2659PubMedGoogle Scholar
  2. Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68(16–18):2197–2210PubMedGoogle Scholar
  3. Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6(7):17–326Google Scholar
  4. Alomary A, Solouki T, Patterson HH, Cronan CS (2000) Elucidation of aluminum-fulvic acid Interactions by gas-phase hydrogen/deuterium (H/D) exchange and electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR). Environ Sci Technol 34(13):2830–2838Google Scholar
  5. Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007) Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52(2):296–308PubMedGoogle Scholar
  6. Anderson NL, Matheson AD, Steiner S (2000) Proteomics: applications in basic and applied biology. Curr Opin Biotechnol 11(4):408–412PubMedGoogle Scholar
  7. Appel RD, Bairoch A (2004) Post-translational modifications: a challenge for proteomics and bioinformatics. Proteomics 4(6):1525–1526PubMedGoogle Scholar
  8. Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36(5):652–663PubMedGoogle Scholar
  9. Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28(1):93–120PubMedGoogle Scholar
  10. Bahrman N, Petit RJ (1995) Genetic polymorphism in maritime pine (pinus pinaster ait.) assessed by two-dimensional gel electrophoresis of needle, bud and pollen proteins. J Mol Evol 41(2):231–237Google Scholar
  11. Barberr M, Bordolri RS, Sedgwick D, Tyler AN (1981) Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J Chem Soc Chem Commun 7:325–327Google Scholar
  12. Barrera NP, Di Bartolo N, Booth PJ, Robinson CV (2008) Micelles protect membrane complexes from solution to vacuum. Science 321(5886):243–246PubMedGoogle Scholar
  13. Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282(43):31206–31216PubMedGoogle Scholar
  14. Belov ME, Gorshkov MV, Udseth HR, Anderson GA, Smith RD (2000) Zeptomole-sensitivity electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry of proteins. Anal Chem 72(10):2271–2279PubMedGoogle Scholar
  15. Benninghoven A, Jaspers D, Sichtermann W (1976) Secondary-ion emission of amino acids. Appl Phys 11(1):35–39Google Scholar
  16. Bernard S, Pujo-Menjouet L, Mackey MC (2003) Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys J 84(5):3414–3424PubMedGoogle Scholar
  17. Berne BJ, Straub JE (1997) Novel methods of sampling phase space in the simulation of biological systems. Curr Opin Cell Biol 7(2):181–189Google Scholar
  18. Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101(2–3):157–170PubMedGoogle Scholar
  19. Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23(1):122–137PubMedGoogle Scholar
  20. Bilang J, Sturm A (1995) Cloning and characterization of a glutathione s-transferase that can be photolabeled with 5-azido-indole-3-acetic acid. Plant Physiol 109(1):253–260PubMedGoogle Scholar
  21. Blow N (2009) Microfluidics: the great divide. Nat Meth 6(9):683–686Google Scholar
  22. Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24(2):168–200PubMedGoogle Scholar
  23. Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7(7):1121–1130PubMedGoogle Scholar
  24. Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P (2002) Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis: A genomic analysis. Plant Physiol 129:486–499PubMedGoogle Scholar
  25. Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24(12):543–548PubMedGoogle Scholar
  26. Bruce JE, Cheng X, Bakhtiar R, Wu Q, Hofstadler SA, Anderson GA, Smith RD (1994) Trapping, detection, and mass measurement of individual ions in a Fourier transform ion cyclotron resonance mass spectrometer. J Am Chem Soc 116(17):7839–7847Google Scholar
  27. Bruggeman FJ, Westerhoff HV, Boogerd FC (2002) BioComplexity: a pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philos Psychol 15(4):411–440Google Scholar
  28. Caldas NM, Oliveira SR, Gomes Neto JA (2009) Feasibility of internal standardization in the direct and simultaneous determination of As, Cu and Pb in sugar-cane spirits by graphite furnace atomic absorption spectrometry. Anal Chim Acta 636(1):1–5PubMedGoogle Scholar
  29. Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27(4):354–377PubMedGoogle Scholar
  30. Castoro JA, Wilkins CL (1993) Ultrahigh resolution matrix-assisted laser desorption/ionization of small proteins by Fourier transform mass spectrometry. Anal Chem 65(19):621–2627Google Scholar
  31. Catherine D, De Dominique V, Michel Z, Hervé T (1986) Technical improvements in two-­dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling ­proteins. Electrophoresis 7(1):52–54Google Scholar
  32. Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12(9):1647–1665PubMedGoogle Scholar
  33. Cejas P, Casado E, Belda-Iniesta C, De Castro J, Espinosa E, Redondo A, Sereno M, Garcia-Cabezas MA, Vara JA, Dominguez-Caceres A, Perona R, Gonzalez-Baron M (2004) Implications of oxidative stress and cell membrane lipid peroxidation in human cancer. Cancer Causes Control 15(7):707–719PubMedGoogle Scholar
  34. Chan J, Mao G, Lloyd C (2003) Proteomic analysis of plant microtubule-associated proteins. Cell Biol Int 27(3):181PubMedGoogle Scholar
  35. Chen H, Gamez G, Zenobi R (2009) What can we learn from ambient ionization techniques? J Am Soc Mass Spectrom 20(11):1947–1963PubMedGoogle Scholar
  36. Chung EW, Nettleton EJ, Morgan CJ, Gross M, Miranker A, Radford SE, Dobson CM, Robinson CV (1997) Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Sci 6(6):1316–1324PubMedGoogle Scholar
  37. Cohen MJ, Karasek FW (1970) Plasma chromatography. A new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8(6):330–337Google Scholar
  38. Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283Google Scholar
  39. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214PubMedGoogle Scholar
  40. Cooper B, Eckert D, Andon NL, Yates JR, Haynes PA (2003) Investigative proteomics: identification of an unknown plant virus from infected plants using mass spectrometry. J Am Soc Mass Spectrom 14(7):736–741PubMedGoogle Scholar
  41. Cooper HJ, Hakansson K, Marshall AG (2005) The role of electron capture dissociation in biomolecular analysis. Mass Spectrom Rev 24(2):201–222PubMedGoogle Scholar
  42. Cozzolino D (2009) Near infrared spectroscopy in natural products analysis. Planta Med 75(7):746–756PubMedGoogle Scholar
  43. Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172PubMedGoogle Scholar
  44. Deborah P (2009) Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics: Clin Appl 3(2):155–172Google Scholar
  45. Demirev PA (2004) Enhanced specificity of bacterial spore identification by oxidation and mass spectrometry. Rapid Commun Mass Spectrom 18(22):2719–2722PubMedGoogle Scholar
  46. Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67(17):1907–1924PubMedGoogle Scholar
  47. Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6(4):307–311PubMedGoogle Scholar
  48. Domon B, Aebersold R (2006a) Challenges and opportunities in proteomics data analysis. Mol Cell Proteomics 5(10):1921–1926PubMedGoogle Scholar
  49. Domon B, Aebersold R (2006b) Mass spectrometry and protein analysis. Science 312(5771):212–217PubMedGoogle Scholar
  50. Dongre AR, Somogyi A, Wysocki VH (1996) Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J Mass Spectrom 31(4):339–350PubMedGoogle Scholar
  51. Drake RR, Deng Y, Schwegler EE, Gravenstein S (2005) Proteomics for biodefense applications: progress and opportunities. Expert Rev Proteomics 2(2):203–213PubMedGoogle Scholar
  52. Dumas-Gaudot E, Bestel-Corre G, Gianinazzi S (2001) Recent research developments. In: Pandalai SG (ed) Plant biology. Research Signpost, Trivandrum, IndiaGoogle Scholar
  53. Durst F, Benveniste I, Lesot A, Salaon J-P, Werck-Reichhart D (1997) Regulation of enzymatic systems detoxifying Xenobiotics in plantsGoogle Scholar
  54. Fang JY, Wan XC (2008) XPS analysis of tea plant leaf and root surface. Guang Pu Xue Yu Guang Pu Fen Xi 28(9):2196–2200PubMedGoogle Scholar
  55. Farriol-Mathis N, Garavelli JS, Boeckmann B, Duvaud S, Gasteiger E, Gateau A, Veuthey AL, Bairoch A (2004) Annotation of post-translational modifications in the Swiss-Prot knowledge base. Proteomics 4(6):1537–1550PubMedGoogle Scholar
  56. Fattahi A, Zekavat B, Solouki T (2010) H/D exchange kinetics: experimental evidence for formation of different b fragment ion conformers/isomers during the gas-phase peptide sequencing. J Am Soc Mass Spectrom 21(2):358–369PubMedGoogle Scholar
  57. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71PubMedGoogle Scholar
  58. Fernandez-Lima FA, Becker C, McKenna AM, Rodgers RP, Marshall AG, Russell DH (2009) Petroleum crude oil characterization by IMS-MS and FTICR MS. Anal Chem 81(24):9941–9947PubMedGoogle Scholar
  59. Fievre A, Solouki T, Marshall AG, Cooper WT (1997) High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption­/­ionization and electrospray ionization. Energy Fuels 11(3):554–560Google Scholar
  60. Finney LA, óHalloran TV (2003) Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science 300(5621):931–936PubMedGoogle Scholar
  61. Fisher LB (1968) Determination of the normal rate and duration of mitosis in human epidermis. Br J Dermatol 80(1):24–28PubMedGoogle Scholar
  62. Founds SA (2009) Introducing systems biology for nursing science. Biol Res Nurs 11(1):73–80PubMedGoogle Scholar
  63. Fournier F, Guo R, Gardner EM, Donaldson PM, Loeffeld C, Gould IR, Willison KR, Klug DR (2009) Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis. Acc Chem Res 42(9):1322–1331PubMedGoogle Scholar
  64. Fournier JC, Codaccdoni P, Soulas G (1981) Soil adaptation to 2, 4-D degradation in relation to the application rates and the metabolic behavior of the degrading microflora. Chemosphere 10(8):977–984Google Scholar
  65. Freidberg F (1974) Effects of metal binding on protein structure. Q Rev Biophys 7:1–33Google Scholar
  66. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of arabidopsis thaliana seed germination and priming. Plant Physiol 126(2):835–849PubMedGoogle Scholar
  67. Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133(2):664–682PubMedGoogle Scholar
  68. Garavelli JS (2003) The RESID database of protein modifications: 2003 developments. Nucleic Acids Res 31(1):499–501PubMedGoogle Scholar
  69. Garavelli JS (2004) The RESID database of protein modifications as a resource and annotation tool. Proteomics 4(6):1527–1533PubMedGoogle Scholar
  70. Gauthier JW, Trautman TR, Jacobson DB (1991) Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal Chim Acta 246:211–225Google Scholar
  71. Gianinazzi-Pearson V, Denarie J (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci 2(10):371–372Google Scholar
  72. Gillig KJ, Bluhm BK, Russell DH (1996) Ion motion in a Fourier transform ion cyclotron resonance wire ion guide cell. Int J Mass Spectrom Ion Processes 157(158):129–147Google Scholar
  73. Gillig KJ, Ruotolo B, Stone EG, Russell DH, Fuhrer K, Gonin M, Schultz AJ (2000) Coupling high-pressure MALDI with ion mobility/orthogonal time-of-flight mass spectrometry. Anal Chem 72(17):3965–3971PubMedGoogle Scholar
  74. Gotloib L (2009) Mechanisms of cell death during peritoneal dialysis. A role for osmotic and oxidative stress. Contrib Nephrol 163:35–44PubMedGoogle Scholar
  75. Grigorov MG (2006) Global dynamics of biological systems from time-resolved omics experiments. Bioinformatics 22(12):1424–1430PubMedGoogle Scholar
  76. Guo S, Zhou Q, Lu T, Ding X, Huang X (2008) Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+. Spectrochim Acta Part A: Mol Biomol 70(4):818–823Google Scholar
  77. Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82(11):3673–3677PubMedGoogle Scholar
  78. Gye MC, Park S, Kim YS, Ahn HS (2001) Mobility shift assay of calcium-binding proteins of mouse epididymal spermatozoa. Andrologia 33(4):193–198PubMedGoogle Scholar
  79. Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5(4):950–960PubMedGoogle Scholar
  80. Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6(4):1451–1460PubMedGoogle Scholar
  81. Han KK, Martinage A (1992) Post-translational chemical modification(s) of proteins. Int J Biochem 24(1):19–28PubMedGoogle Scholar
  82. Harris CM (2001) on Waiting to exhale: meeting news from the Federation of Analytical Chemistry & Spectroscopy Societies (FACSS): PC/GC FT-ICR for Exhaled Breath Analysis. In: Solouki T, Szulejko JE, Fredrick BG, Lad RJ (eds) Anal Chem 73:658A–659AGoogle Scholar
  83. Harris GA, Nyadong L, Fernandez FM (2008) Recent developments in ambient ionization ­techniques for analytical mass spectrometry. Analyst 133(10):1297–1301PubMedGoogle Scholar
  84. He C-Y, Zhang J-G, Duan A-G, Sun H-G, Fu L-H, Zheng S-X (2007) Proteins responding to drought and high-temperature stress in Pinus armandii Franch. Can J Bot 85(10):994–1002Google Scholar
  85. He F, Emmett MR, Hakansson K, Hendrickson CL, Marshall AG (2004) Theoretical and experimental prospects for protein identification based solely on accurate mass measurement. J Proteome Res 3(1):61–67PubMedGoogle Scholar
  86. Heffner C, Silwal I, Peckenham JM, Solouki T (2007) Emerging technologies for identification of disinfection byproducts: GC/FT-ICR MS characterization of solvent artifacts. Environ Sci Technol 41(15):5419–5425PubMedGoogle Scholar
  87. Henzel WJ, Watanabe C, Stults JT (2003) Protein identification: the origins of peptide mass ­fingerprinting. J Am Soc Mass Spectrom 14(9):931–942PubMedGoogle Scholar
  88. Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96(7):2239–2314PubMedGoogle Scholar
  89. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81(3):802–806PubMedGoogle Scholar
  90. Jackson M, Solouki T, Hall SK, Szulejko JE (2009) Differentiation between pure cultures of streptococcus pyogenes and pseudomonas aeruginosa by FT-ICR-MS volatile analysis. Open Spectrosc J 3(5):21–25Google Scholar
  91. Jacobs DI, Van der Heijden R, Verpoorte R (2000) Proteomics in plant biotechnology and secondary metabolism research. Phytochem Anal 11(5):277–287Google Scholar
  92. Jespersen S, Niessen WMA, Tjaden UR, Jvd G, Litborn E, Lindberg U, Roeraade J, Hillenkamp F (1994) Attomole detection of proteins by matrix-assisted laser desorption/ionization mass spectrometry with the use of picolitre vials. Rapid Commun Mass Spectrom 8(8):581–584Google Scholar
  93. Jiang H, Qin Y, Hu B (2008) Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74(5):1160–1165PubMedGoogle Scholar
  94. Jones AM (1994) Auxin-binding proteins. Annu Rev Plant Physiol Plant Mol Biol 45(1):393–420Google Scholar
  95. Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72(3):285–314PubMedGoogle Scholar
  96. Kameshita I, Fujisawa H (1997) Preparation and characterization of calmodulin-dependent protein kinase IV (CaM-kinase IV) free of CaM-kinase IV kinase from rat cerebral cortex. Anal Biochem 249:252–255PubMedGoogle Scholar
  97. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22PubMedGoogle Scholar
  98. Kanu AB, Hill HH Jr (2008) Ion mobility spectrometry detection for gas chromatography. J Chromatogr A 1177(1):12–27PubMedGoogle Scholar
  99. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136(4):4159–4168PubMedGoogle Scholar
  100. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78:53–68Google Scholar
  101. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal Chem 60(20):2299–2301PubMedGoogle Scholar
  102. Karasek FW (1970) Plasma chromatograph. Res Dev 21(3):34–37Google Scholar
  103. Karasek FW (1974) Plasma chromatography. Anal Chem 46(8):710A–720AGoogle Scholar
  104. Kazazic S, Zhang HM, Schaub TM, Emmett MR, Hendrickson CL, Blakney GT, Marshall AG (2010) Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 21(4):550–558PubMedGoogle Scholar
  105. Kelleher NL (2004) Top-down proteomics. Anal Chem 76(11):197A–203APubMedGoogle Scholar
  106. Kemper PR, Dupuis NF, Bowers MT (2009) A new, higher resolution, ion mobility mass spectrometer. Int J Mass Spectrom 287(1–3):46–57Google Scholar
  107. Kersten B, Agrawal GK, Iwahashi H, Rakwal R (2006) Plant phosphoproteomics: a long road ahead. Proteomics 6(20):5517–5528PubMedGoogle Scholar
  108. Ketley JN, Habig WH, Jacoby WB (1975) Binding of nonsubstrate ligands to the glutathione s-transferases. J Biol Chem 250(22):8670–8673PubMedGoogle Scholar
  109. Khalvati MA, Bartha B, Dupigny A, Schroder P (2010) Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. J Soils Sediments 10(1):54–64Google Scholar
  110. Kingdon KH (1923) A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys Rev 21:408–418Google Scholar
  111. Knops M, Schuphan I, Schmidt B (1995) Biotransformation of 4-Nitrophenol by a fermenter grown cell suspension culture of soybean (glycine max): isolation and identification of conjugates. Plant Sci 109(2):215–224Google Scholar
  112. Köcher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Meth 4(10):807–815Google Scholar
  113. Kovarik ML, Jacobson SC (2009) Nanofluidics in lab-on-a-chip devices. Anal Chem 81(17):7133–7140PubMedGoogle Scholar
  114. Kruger R, Wolschin F, Weckwerth W, Bettmer J, Lehmann WD (2007) Plant protein phosphorylation monitored by capillary liquid chromatography–element mass spectrometry. Biochem Biophys Res Commun 355(1):89–96PubMedGoogle Scholar
  115. Kuzyk MA, Ohlund LB, Elliott MH, Smith D, Qian H, Delaney A, Hunter CL, Borchers CH (2009) A comparison of MS/MS-based, stable-isotope-labeled, quantitation performance on ESI-quadrupole TOF and MALDI-TOF/TOF mass spectrometers. Proteomics 9(12):3328–3340PubMedGoogle Scholar
  116. Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57(7):1547–1551PubMedGoogle Scholar
  117. Lamoureux GL, Rusness DG (1989) Glutathione: chemical, biochemical and medical aspects (Vol. IIIB). Wiley, New YorkGoogle Scholar
  118. Larson TR, Graham IA (2001) A novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant J 25(1):115–125PubMedGoogle Scholar
  119. Laskin J, Futrell JH (2003) Surface-induced dissociation of peptide ions: kinetics and dynamics. J Am Soc Mass Spectrom 14(12):1340–1347PubMedGoogle Scholar
  120. Laskin J, Futrell JH (2005) Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom Rev 24(2):135–167PubMedGoogle Scholar
  121. Laugesen S, Messinese E, Hem S, Pichereaux C, Grat S, Ranjeva R, Rossignol M, Bono JJ (2006) Phosphoproteins analysis in plants: a proteomic approach. Phytochemistry 67(20):2208–2214PubMedGoogle Scholar
  122. Lei Z, Elmer AM, Watson BS, Dixon RA, Mendes PJ, Sumner LW (2005) A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula. Mol Cell Proteomics 4(11):1812–1825PubMedGoogle Scholar
  123. Leskinen H, Suomela JP, Kallio H (2007) Quantification of triacylglycerol regioisomers in oils and fat using different mass spectrometric and liquid chromatographic methods. Rapid Commun Mass Spectrom 21(14):2361–2373PubMedGoogle Scholar
  124. Li J, LeRiche T, Tremblay TL, Wang C, Bonneil E, Harrison DJ, Thibault P (2002a) Application of microfluidic devices to proteomics research: identification of trace-level protein digests and affinity capture of target peptides. Mol Cell Proteomics 1(2):157–168PubMedGoogle Scholar
  125. Li Y, Jiang Y, Yan XP, Peng WJ, Wu YY (2002b) A flow injection on-line multiplexed sorption preconcentration procedure coupled with flame atomic absorption spectrometry for determination of trace lead in water, tea, and herb medicines. Anal Chem 74(5):1075–1080PubMedGoogle Scholar
  126. Listowski I, Abramovitz M, Homma H, Niitsu Y (1988) Intracellular binding and transport of hormones and xenobiotics by glutathione s-transferases. Drug Metab Rev 19(3–4):305–318Google Scholar
  127. Little DP, Speir JP, Senko MW, óConnor PB, McLafferty FW (1994) Infrared multiphoton ­dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66(18):2809–2815PubMedGoogle Scholar
  128. Litwack G, Ketterer B, Arias IM (1971) Ligandin: a hepatic protein which binds steroids, biliruben, carcinogens, and a number of exogenous organic anions. Nature 234(5330):466–467PubMedGoogle Scholar
  129. Lobinski R, Schaumloffel D, Szpunar J (2006) Mass spectrometry in bioinorganic analytical chemistry. Mass Spectrom Rev 25(2):255–289PubMedGoogle Scholar
  130. Long L, Yao Q, Ai Y, Deng M, Zhu H (2009) Detection of a novel bacterium associated with spores of the arbuscular mycorrhizal fungus Gigaspora margarita. Can J Microbiol 55(6):771–775PubMedGoogle Scholar
  131. Loo JA, Quinn JP, Ryu SI, Henry KD, Senko MW, McLafferty FW (1992) High-resolution tandem mass spectrometry of large biomolecules. Proc Natl Acad Sci USA 89(1):286–289PubMedGoogle Scholar
  132. Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI, Bogdanova A, Robinson M (2000) High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21(16):3427–3440PubMedGoogle Scholar
  133. Luo Z, Heffner C, Solouki T (2009) Multidimensional GC-Fourier transform ion cyclotron resonance MS analyses: utilizing gas-phase basicities to characterize multicomponent gasoline samples. J Chromatogr Sci 47(1):75–82PubMedGoogle Scholar
  134. Macek B, Waanders LF, Olsen JV, Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 5(5):949–958PubMedGoogle Scholar
  135. Macfarlane RD, Torgerson DF (1976) Californium-252 plasma desorption mass spectroscopy. Science 191(4230):920–925PubMedGoogle Scholar
  136. Makarov A (1999a) Mass spectrometry. US Patent 5886346Google Scholar
  137. Makarov A (1999b) The Orbitrap: a novel high-performance electrostatic trap. In: Proceedings of the 48th ASMS conference on mass spectrometry and allied topics, Dallas, TXGoogle Scholar
  138. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72(6):1156–1162PubMedGoogle Scholar
  139. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78(7):113–2120Google Scholar
  140. Malekpour A, Hajialigol S, Taher MA (2009) Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite. J Hazard Mater 172(1):229–233PubMedGoogle Scholar
  141. Marcus RA (1988) On the theory of the state distribution of the reaction products and rates of unimolecular dissociations. Chem Phys Lett 144:2Google Scholar
  142. Marrs KA (1996) The functions and regulation of glutathione s-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47(1):127–158PubMedGoogle Scholar
  143. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17(1):1–35PubMedGoogle Scholar
  144. Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37(1):53–59PubMedGoogle Scholar
  145. Marshall AG, Rodgers RP (2008) Petroleomics: chemistry of the underworld. Proc Natl Acad Sci USA 105(47):18090–18095PubMedGoogle Scholar
  146. Maruyama K, Mikawa T, Ebashi S (1984) Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem 95(2):511–519PubMedGoogle Scholar
  147. Matallana-Surget S, Leroy B, Wattiez R (2010) Shotgun proteomics: concept, key points and data mining. Expert Rev Proteomics 7(1):5–7PubMedGoogle Scholar
  148. McDaniel EW, Martin DW, Barnes WS (1962) Drift-tube mass spectrometer for studies of low-energy ion-molecule reactions. Rev Sci Instrum 33:1–7Google Scholar
  149. McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP (2007) Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274(24):6256–6268PubMedGoogle Scholar
  150. Meeravali NN, Kumar SJ (2000) Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry. Fresenius J Anal Chem 366(3):313–315PubMedGoogle Scholar
  151. Mesarovic MD (1968) Systems theory and biology. Springer, New YorkGoogle Scholar
  152. Mirsaleh-Kohan N, Robertson WD, Compton RN (2008) Electron ionization time-of-flight mass spectrometry: historical review and current applications. Mass Spectrom Rev 27(3):237–285PubMedGoogle Scholar
  153. Mitulovic G, Mechtler K (2006) HPLC techniques for proteomics analysis-a short overview of latest developments. Brief Funct Genomics 5(4):249–260Google Scholar
  154. Mo M, Tse YC, Jiang L (2003) Organelle identification and proteomics in plant cells. Trends Biotechnol 21(8):331–332PubMedGoogle Scholar
  155. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58(1):459–481PubMedGoogle Scholar
  156. Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16(12):3181–3195PubMedGoogle Scholar
  157. Morgan DO (2007) The cell cycle: principles of control, Primers in biology. New Science Press Ltd, LondonGoogle Scholar
  158. Moyer SC, Budnik BA, Pittman JL, Costello CE, óConnor PB (2003) Attomole peptide analysis by high-pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. Anal Chem 75(23):6449–6454PubMedGoogle Scholar
  159. Mukhopadhyay R (2009) Microfluidics: on the slope of enlightenment. Anal Chem 81(11):4169–4173PubMedGoogle Scholar
  160. Munson MSB, Field FH (1966) Chemical ionization mass spectrometry. I. General introduction. J Am Chem Soc 88(12):2621–2630Google Scholar
  161. Narin I, Tuzen M, Soylak M (2004) Comparison of sample preparation procedures for the determination of trace heavy metals in house dust, tobacco and tea samples by atomic absorption spectrometry. Ann Chim 94(11):67–873Google Scholar
  162. Nicol GR, Han M, Kim J, Birse CE, Brand E, Nguyen A, Mesri M, FitzHugh W, Kaminker P, Moore PA, Ruben SM, He T (2008) Use of an immunoaffinity-mass spectrometry-based approach for the quantification of protein biomarkers from serum samples of lung cancer patients. Mol Cell Proteomics 7(10):1974–1982PubMedGoogle Scholar
  163. Oeljeklaus S, Meyer HE, Warscheid B (2009) Advancements in plant proteomics using quantitative mass spectrometry. J Proteomics 72(3):545–554PubMedGoogle Scholar
  164. Ogura Y (1970) Hydrofluoric acid treatment on pasture grass ashes for atomic absorption analysis. Natl Inst Anim Health Q 10(3):171–172Google Scholar
  165. Ohno K, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22):4443–4453PubMedGoogle Scholar
  166. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648PubMedGoogle Scholar
  167. Orchard S, Salwinski L, Kerrien S, Montecchi-Palazzi L, Oesterheld M, Stumpflen V, Ceol A, Chatr-aryamontri A, Armstrong J, Woollard P, Salama JJ, Moore S, Wojcik J, Bader GD, Vidal M, Cusick ME, Gerstein M, Gavin AC, Superti-Furga G, Greenblatt J, Bader J, Uetz P, Tyers M, Legrain P, Fields S, Mulder N, Gilson M, Niepmann M, Burgoon L, De Las RJ, Prieto C, Perreau VM, Hogue C, Mewes HW, Apweiler R, Xenarios I, Eisenberg D, Cesareni G, Hermjakob H (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 25(8):894–898PubMedGoogle Scholar
  168. Ospelkaus S, Ni KK, Wang D, de Miranda MH, Neyenhuis B, Quemener G, Julienne PS, Bohn JL, Jin DS, Ye J (2010) Quantum-state controlled chemical reactions of ultracold potassium-­rubidium molecules. Science 327(5967):853–857PubMedGoogle Scholar
  169. Outten CE, óHalloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526):2488–2492PubMedGoogle Scholar
  170. Ouvry-Patat SA, Torres MP, Gelfand CA, Quek HH, Easterling M, Speir JP, Borchers CH (2009) Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer. In: Methods in molecular biology, vol 492Google Scholar
  171. Padliya ND, Cooper B (2006) Mass spectrometry-based proteomics for the detection of plant pathogens. Proteomics 6(14):4069–4075PubMedGoogle Scholar
  172. Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797PubMedGoogle Scholar
  173. Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3(6):327–332PubMedGoogle Scholar
  174. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(3s):311–323PubMedGoogle Scholar
  175. Peck SC (2003) Early phosphorylation events in biotic stress. Curr Opin Plant Biol 6(4):334–338PubMedGoogle Scholar
  176. Peck SC (2006) Phosphoproteomics in Arabidopsis: moving from empirical to predictive science. J Exp Bot 57(7):1523–1527PubMedGoogle Scholar
  177. Peck SC, Nuhse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13(6):1467–1475PubMedGoogle Scholar
  178. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27(6):661–699PubMedGoogle Scholar
  179. Peters RJ, Bolck YJ, Rutgers P, Stolker AA, Nielen MW (2009) Multi-residue screening of veterinary drugs in egg, fish and meat using high-resolution liquid chromatography accurate mass time-of-flight mass spectrometry. J Chromatogr A 1216(46):8206–8216PubMedGoogle Scholar
  180. Peterson AC, Quarmby ST, McAlister GC, Coon JJ (2009) Implementation of an EI/CI interface on a hybrid orbitrap system for ultra-high resolution GC-MS. In: Proceedings of the 57th ASMS conference on mass spectrometry and allied topics, Philadelphia, PAGoogle Scholar
  181. Pothan LA, Simon F, Spange S, Thomas S (2006) XPS studies of chemically modified banana fibers. Biomacromolecules 7(3):892–898PubMedGoogle Scholar
  182. Previs MJ, VanBuren P, Begin KJ, Vigoreaux JO, LeWinter MM, Matthews DE (2008) Quantification of protein phosphorylation by liquid chromatography-mass spectrometry. Anal Chem 80(15):5864–5872PubMedGoogle Scholar
  183. Price WD, Schnier PD, Jockusch RA, Strittmatter EF, Williams ER (1996) Unimolecular reaction kinetics in the high-pressure limit without collisions. J Am Chem Soc 118(43):10640–10644PubMedGoogle Scholar
  184. Qian WJ, Camp DG, Smith RD (2004) High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Expert Rev Proteomics 1(1):87–95PubMedGoogle Scholar
  185. Rappsilber J, Mann M (2002a) Is mass spectrometry ready for proteome-wide protein expression analysis? Genome Biol 3(80: COMMENT 2008Google Scholar
  186. Rappsilber J, Mann M (2002b) What does it mean to identify a protein in proteomics? Trends Biochem Sci 27(2):74–78PubMedGoogle Scholar
  187. Reed GH, Poyner RR (1997) Mn+2 as a probe of divalent metal ion binding and function in Enzymes and other proteins. In: Sigl A, Sigl H (eds) Manganese and its role in biological processes. Marcel Dekker, New York, pp 183–207Google Scholar
  188. Rodriguez M, Schaper J (2005) Apoptosis: measurement and technical issues. J Mol Cell Cardiol 38(1):15–20PubMedGoogle Scholar
  189. Romisch-Margl W, Schramek N, Radykewicz T (2007) 13CO2 as a universal metabolic tracer in isotopologue perturbation experiments. Phytochemistry 68(16–18):2273–2289PubMedGoogle Scholar
  190. Rose JK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39(5):715–733PubMedGoogle Scholar
  191. Rossignol M (2006) Proteomic analysis of phosphorylated proteins. Curr Opin Plant Biol 9(5):538–543PubMedGoogle Scholar
  192. Ruotolo BT, GFt V, Thomson LM, Woods AS, Gillig KJ, Russell DH (2002) Distinguishing between phosphorylated and nonphosphorylated peptides with ion mobility-mass spectrometry. J Proteome Res 1(4):303–306PubMedGoogle Scholar
  193. Salehpour M, Possnert G, Bryhni H (2008) Subattomole sensitivity in biological accelerator mass spectrometry. Anal Chem 80(10):3515–3521PubMedGoogle Scholar
  194. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76(2–3):199–219Google Scholar
  195. Samra A, DumasGaudot E, GianinazziPearson V, Gianinazzi S (1996) Soluble proteins and polypeptide profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc(+)) and non-host (myc(-)) - Pisum sativum root exudates. Agronomie 16(10):709–719Google Scholar
  196. Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132(2):209–219PubMedGoogle Scholar
  197. Sandermann H Jr (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacokinetics 4(5):225–241Google Scholar
  198. Scarff CA, Thalassinos K, Hilton GR, Scrivens JH (2008) Travelling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun Mass Spectrom 22(20):3297–3304PubMedGoogle Scholar
  199. Schmidt B (2001) Metabolic profiling using plant cell suspension cultures. In: Christopher HJ, Hoagland RE, Zablotowicz RM (eds) Pesticide biotransformation in plants and microorganisms similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, pp 40–56Google Scholar
  200. Schmidt B (2002) Metabolism of agrochemicals in plants and animals – recent developments and experimental approaches. IBC Life Sciences, London, UKGoogle Scholar
  201. Schnabel LV, Mohammed HO, Jacobson MS, Fortier LA (2004) Effects of platelet rich plasma and acellular bone marrow on gene expression patterns and DNA content of equine suspensory ligament explant cultures. Equine Vet J 40(3):260–265Google Scholar
  202. Schnable PS, Hochholdinger F, Nakazono M (2004) Global expression profiling applied to plant development. Curr Opin Plant Biol 7(1):50–56PubMedGoogle Scholar
  203. Schultz CJ, Johnson KL, Currie G, Bacic A (2000) The classical Arabinogalactan protein gene family of Arabidopsis. Plant Cell 12(9):1751–1768PubMedGoogle Scholar
  204. Scigelova M, Makarov A (2006) Orbitrap mass analyzer–overview and applications in proteomics. Proteomics 6(Suppl 2):16–21PubMedGoogle Scholar
  205. Shen Y, Tolic N, Masselon C, Pasa-Tolic L, Camp DG, Hixson KK, Zhao R, Anderson GA, Smith RD (2004) Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS. Anal Chem 76(1):144–154PubMedGoogle Scholar
  206. Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci 176(1):99–104Google Scholar
  207. Shi SD, Hendrickson CL, Marshall AG (1998) Counting individual sulfur atoms in a protein by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry: experimental resolution of isotopic fine structure in proteins. Proc Natl Acad Sci USA 95(20):11532–11537PubMedGoogle Scholar
  208. Shin J, Lee W (2008) Structural proteomics by NMR spectroscopy. Expert Rev Proteomics 5(4):589–601PubMedGoogle Scholar
  209. Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96(4):1750–1755PubMedGoogle Scholar
  210. Simon-Sylvestre G, Fournier JC (1979) Effects of pesticides on the soil microflora. Adv Agron 31:1–92Google Scholar
  211. Singh RJ (2002) Plant cytogenetics, 2nd edn. CRC Press LLC, Boca Raton, FLGoogle Scholar
  212. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55(1):555–590PubMedGoogle Scholar
  213. Smith RD, Cheng X, Bruce JE, Hofstadler SA, Anderson GA (1994) Trapping, detection and reaction of very large single molecular ions by mass spectrometry. Nature 369:137–139Google Scholar
  214. Smith RD, Shen Y, Tang K (2004) Ultrasensitive and quantitative analyses from combined separations-mass spectrometry for the characterization of proteomes. Acc Chem Res 37(4):269–278PubMedGoogle Scholar
  215. Solouki T, Emmett MR, Guan S, Marshall AG (1997) Detection, number, and sequence location of sulfur-containing amino acids and disulfide bridges in peptides by ultrahigh-resolution MALDI FTICR mass spectrometry. Anal Chem 69(6):1163–1168PubMedGoogle Scholar
  216. Solouki T, Fort RC Jr, Alomary A, Fattahi A (2001) Gas phase hydrogen deuterium exchange reactions of a model peptide: FT-ICR and computational analyses of metal induced conformational mutations. J Am Soc Mass Spectrom 12(12):272–1285Google Scholar
  217. Solouki T, Freitas MA, Alomary A (1999) Gas-phase hydrogen/deuterium exchange reactions of fulvic acids: an electrospray ionization Fourier transform ion cyclotron resonance mass ­spectral study. Anal Chem 71(20):719–4726Google Scholar
  218. Solouki T, Gillig KJ, Russell DH (1994) Detection of high-mass biomolecules in Fourier ­transform ion cyclotron resonance mass spectrometry: theoretical and experimental investigations. Anal Chem 66(9):583–1587Google Scholar
  219. Solouki T, Marto JA, White FM, Guan S, Marshall AG (1995) Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance. Anal Chem 67(22):139–4144Google Scholar
  220. Solouki T, Pasa-Tolic L, Jackson GS, Guan S, Marshall AG (1996) High-resolution multistage MS, MS2, and MS3 matrix-assisted laser desorption/ionization FT-ICR mass spectra of peptides from a single laser shot. Anal Chem 68(21):718–3725Google Scholar
  221. Solouki T, Russell DH (1992) Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry. Proc Natl Acad Sci USA 89(13):701–5704Google Scholar
  222. Solouki T, Szulejko JE (2007) Bimolecular and unimolecular contributions to the disparate self-chemical ionizations of alpha-pinene and camphene isomers. J Am Soc Mass Spectrom 18(11):026–2039Google Scholar
  223. Solouki T, Szulejko JE, Bennett JB, Graham LB (2004a) A preconcentrator coupled to a GC/FTMS: advantages of self-chemical ionization, mass measurement accuracy, and high mass resolving power for GC applications. J Am Soc Mass Spectrom 15(8):1191–1200PubMedGoogle Scholar
  224. Solouki T, Szulejko JE, Luo Z (2004b) Multidimensional GC Fourier transform ion cyclotron resonance mass spectrometry: resolving complex mixtures. In: Proceedings of the 52nd ASMS conference on mass spectrometry and allied topics, Nashville, TNGoogle Scholar
  225. Sommer H, Thomas HA, Hipple JA (1951) Measurement of e/m by cyclotron resonance. Phys Rev 82(5):697–702Google Scholar
  226. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem (International Edition in English) 45(44):7336–7356Google Scholar
  227. Spain JIM, Van Veld PA (1983) Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Appl Environ Microbiol 45(2):428–435PubMedGoogle Scholar
  228. Stewart II, Thomson T, Figeys D (2001) 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom 15(24):2456–2465PubMedGoogle Scholar
  229. Strobel FH, Solouki T, White MA, Russell DH (1991) Detection of femtomole and sub-femtomole levels of peptides by tandem magnetic sector/reflectron time-of-flight mass spectrometry and matrix-assisted laser desorption ionization. J Am Soc Mass Spectrom 2(1):91–94Google Scholar
  230. Strupat K, Karas M, Hillenkamp F (1991) 2, 5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int J Mass Spectrom Ion Processes 111:89–102Google Scholar
  231. Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974PubMedGoogle Scholar
  232. Swisher BA (1987) Use of plant cell culture in pesticide metabolism studies. In: LeBaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) Biotechnology in agricultural chemistry, vol 334, ACS symposium series. American Chemical Society, Washington DC, pp 18–40Google Scholar
  233. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101(26):9528–9533PubMedGoogle Scholar
  234. Szpunar J (2000) Bio-inorganic speciation analysis by hyphenated techniques. Analyst 125(5):963–988PubMedGoogle Scholar
  235. Szpunar J, Lobinski R, Prange A (2003) Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc 57(3):102A–112AGoogle Scholar
  236. Szulejko JE, Luo Z, Solouki T (2006) Simultaneous determination of analyte concentrations, gas-phase basicities, and proton transfer kinetics using Gas Chromatography/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GC/FT-ICR MS). Int J Mass Spectrom 257(1–3):16–26Google Scholar
  237. Szulejko JE, Solouki T (2002) Potential analytical applications of interfacing a GC to an FT-ICR MS: fingerprinting complex sample matrixes. Anal Chem 74(14):3434–3442PubMedGoogle Scholar
  238. Tagliaro F, Pascali J, Fanigliulo A, Bortolotti F (2010) Recent advances in the application of CE to forensic sciences: a update over years 2007–2009. Electrophoresis 31(1):251–259PubMedGoogle Scholar
  239. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153Google Scholar
  240. Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20(10):2013–2026PubMedGoogle Scholar
  241. Thurman EM, Ferrer I, Zweigenbaum JA (2006) High-resolution and accurate mass analysis of xenobiotics in food. Anal Chem 78(19):6703–6708Google Scholar
  242. Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71(4):391–411PubMedGoogle Scholar
  243. Torstensson NTL, Stark J, Goransson B (1975) The effect of repeated applications of 2, 4-D and MCPA on their breakdown in soil. Weed Res 15(3):159–164Google Scholar
  244. Trimpin S, Clemmer DE (2008) Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal Chem 80(23):9073–9083PubMedGoogle Scholar
  245. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197PubMedGoogle Scholar
  246. Viglio S, Fumagalli M, Ferrari F, Iadarola P (2010) MEKC: a powerful tool for the determination of amino acids in a variety of biomatrices. Electrophoresis 31(1):93–104PubMedGoogle Scholar
  247. Vitamvas P, Kosova K, Prasil IT (2007) Proteome analysis in plant stress research. Czech J Genetics Plant Breed 43(1):1–6Google Scholar
  248. Von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111(2872):23–29Google Scholar
  249. Wang TCL, Ricca TL, Marshall AG (1986) Extension of dynamic range in Fourier transform ion cyclotron resonance mass spectrometry via stored waveform inverse Fourier transform excitation. Anal Chem 58(14):2935–2938PubMedGoogle Scholar
  250. Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24(14):2369–2375PubMedGoogle Scholar
  251. Wang W, Tai F, Chen S (2008) Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J Sep Sci 31(11):2032–2039PubMedGoogle Scholar
  252. Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27(13):2782–2786PubMedGoogle Scholar
  253. Wei ZG, Wong JW, Zhao HY, Zhang HJ, Li HX, Hu F (2007) Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biol Trace Elem Res 118(2):146–158PubMedGoogle Scholar
  254. Wen X, Wu P, Chen L, Hou X (2009) Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 650(1):33–38PubMedGoogle Scholar
  255. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57(3):675–679PubMedGoogle Scholar
  256. Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50PubMedGoogle Scholar
  257. Williams DK Jr, Muddiman DC (2007) Parts-per-billion mass measurement accuracy achieved through the combination of multiple linear regression and automatic gain control in a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 79(13):5058–5063PubMedGoogle Scholar
  258. Williams RJP (2001) Chemical selection of elements by cells. Coord Chem Rev 216:583–595Google Scholar
  259. Wilson DJ, Konermann L (2005) Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device. Anal Chem 77(21):6887–6894PubMedGoogle Scholar
  260. Winter D, Seidler J, Ziv-Lehrman S, Shiloh Y, Lehmann WD (2009) Simultaneous identification and quantification of proteins by differential 16O/18O labeling and UPLC-MS/MS applied to mouse cerebellar phosphoproteome following rradiation. Anticancer Res 29(12):4949–4958PubMedGoogle Scholar
  261. Wysocki VH, Joyce KE, Jones CM, Beardsley RL (2008) Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes. J Am Soc Mass Spectrom 19(2):190–208PubMedGoogle Scholar
  262. Xing T, Ouellet T, Miki BL (2002) Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci 7(5):224–230PubMedGoogle Scholar
  263. Yew PR (2001) Ubiquitin-mediated proteolysis of vertebrate G1-and S-phase regulators. J Cell Physiol 187(1):1–10PubMedGoogle Scholar
  264. Zabrouskov V, Giacomelli L, van Wijk KJ, McLafferty FW (2003) A new approach for plant proteomics: characterization of chloroplast proteins of Arabidopsis thaliana by top-down mass spectrometry. Mol Cell Proteomics 2(12):1253–1260PubMedGoogle Scholar
  265. Zer H, Ohad I (2003) Light, redox state, thylakoid-protein phosphorylation and signaling gene expression. Trends Biochem Sci 28(9):467–470PubMedGoogle Scholar
  266. Zer H, Vink M, Shochat S, Herrmann RG, Andersson B, Ohad I (2003) Light affects the ­accessibility of the thylakoid light harvesting complex II (LHCII) phosphorylation site to the membrane protein kinase(s). Biochemistry 42(3):728–738PubMedGoogle Scholar
  267. Zhang Y, Zhao Z, Xue Y (2009) Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol 60:21–42PubMedGoogle Scholar
  268. Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374(3):538–542PubMedGoogle Scholar
  269. Zhu H, Snyder M (2002) “Omic” approaches for unraveling signaling networks. Curr Opin Cell Biol 14(2):173–179PubMedGoogle Scholar
  270. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations: a nonergodic process. J Am Chem Soc 120:3265–3266Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Touradj Solouki
    • 1
    Email author
  • Mohammad Ali Khalvati
    • 2
  • Mahsan Miladi
    • 1
  • Behrooz Zekavat
    • 1
  1. 1.Department of ChemistryUniversity of MaineOronoUSA
  2. 2.Department of Microbe–Plant InteractionsGerman Research Centre for Environmental Health (Helmholtz-Zentrum München)NeuherbergGermany

Personalised recommendations