Bioindicators and Biomonitors: Use of Organisms to Observe the Influence of Chemicals on the Environment

  • Bernd Markert
  • Simone Wünschmann
Part of the Plant Ecophysiology book series (KLEC, volume 8)


For a number of years “classical” programs for environmental monitoring are being supplemented by bioindication measures already. Here, investigations on living organisms or their remains (e.g. peat) are used to indicate the environmental situation in either qualitative (bioindication) or quantitative (biomonitoring) terms. This provides pieces of information on environmental burdens of a region at a given point of time or on its changes with time (trend analysis). Classical bioindication often deals with observation and measurements of chemical noxae (both inorganic and organic ones) in well-defined bioindicator plants or animals (including man). In terms of analytical procedures and results there are parallel developments between progresses in bioindication and innovation in analytical methods. After some 30 years of development in bioindication there are now following lines of further development: 1) more frequent inclusion of multi-element total analyses for a thorough investigation of mutual correlations in the sense of the Biological System of Elements, 2) more work on (analytical) speciation issues to proceed into real effect-oriented environmental sciences, and 3) there should and must be a focus on integrative bioindication methods because for a large number of environmental monitoring problems a single bioindicator will not provide any meaningful information: a single bioindicator is about as good as none at all. Integrative concepts such as the Multi-Markered Bioindication Concept (MMBC) provide basic means to get into precautionary environmental protection effects drawing upon such a second-generation bioindication methodology.


Reaction Indicator Environmental Specimen Banking Human Toxicology Specimen Banking Ecosystem Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank all colleagues, friends, clients and students of numerous field studies worldwide for their critical and intensive discussions on our common topic (bioindication and biomonitoring) since a lot of years. A lot of their thoughts have influenced our MS.


  1. Adriano DC (1992) Biogeochemistry of trace. Metals Lewis, Boca Raton, FLGoogle Scholar
  2. Altenburger R, Schmitt M (2003) Predicting toxic effects of contaminants in ecosystems using single species investigations. In: Markert B, Breure A, Zechmeister H (eds) Bioindicators and biomonitors: principles, concepts and applications. Elsevier, Amsterdam, pp 153–198CrossRefGoogle Scholar
  3. Arndt U (1992) Key reactions in forest disease used as effects criteria for biomonitoring. In: McKenzie DH, Hyatt DE, McDonald VJ (eds) Ecological indicators. Proceedings of the international symposium Fort Lauderdale USA, Oct 1990, pp 16–19. Elsevier, Applied Science Publications, London, pp 829–840Google Scholar
  4. Bacchi MA, De Nadai Fernandes EA, Oliveira H (2000) Brazilian experience on K0-standardized neutron activation analysis. Radio Nucl Chem Budapest 245(1):217–222CrossRefGoogle Scholar
  5. Bargagli R (ed) (1998) Trace elements in terrestrial plants – an ecophysiological approach to biomonitoring and biorecovery. Springer, HeidelbergGoogle Scholar
  6. Blanck H, Wängberg SA, Molander S (1988) Pollution-induced community tolerance. A new ecotoxicological tool. In: Cairns JJ, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals, ASTM STP 988. American Society for Testing and Materials, Philadelphia, PA, pp 219–230CrossRefGoogle Scholar
  7. Bode P, De Nadai Fernandes EA, Greenberg RR (2000) Metrology for chemical measurements and the position of INAA. J Radioanal Nucl Chem Budapest 245(1):109–114CrossRefGoogle Scholar
  8. Breulmann G, Ogino K, Ninomiya I, Ashton PS, La Frankie JV, Leffler U, Weckert V, Lieth H, Konschak R, Markert B (1998) Chemical characterisation of Dipterocarpaceae by use of chemical fingerprinting – a multielement approach at Sarawak, Malaysia. Sci Total Environ 215:85–100CrossRefGoogle Scholar
  9. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702PubMedCrossRefGoogle Scholar
  10. Broadley MR, Hammond JP, King GJ, Astley D, Bowen HC, Meacham MC, Mead A, Pink DAC, Teakle GR, Hayden RM, Spracklen WP, White PJ (2008) Shoot calcium and magnesium ­concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol 146(4):1707–1720PubMedCrossRefGoogle Scholar
  11. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17Google Scholar
  12. Carreras HA, Gudino GL, Pignata ML (1998) Comparative biomonitoring of atmospheric quality in five zones of Cordoba city (Argentina) employing the transplanted lichen Usnea sp. Environ Pollut 103:317CrossRefGoogle Scholar
  13. Chaney RL, Chen KY, Li YM, Angle JS, Baker AJM (2008) Effects of calcium and nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311(1–2):131–140CrossRefGoogle Scholar
  14. Dansereau P (1971) Dimensions of environmental quality, Sarracenia no. 14. University of Montréal, MontréalGoogle Scholar
  15. De Bruyn U, Linders HW, Mohr K (2009) Epiphytische Flechten im Wandel von Immissionen und Klima – Ergebnisse einer Vergleichskartierung 1989/2007 in Nordwestdeutschland. Umweltwissenschaften Schadstoff-Forschung 21:63–75CrossRefGoogle Scholar
  16. Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Markert B, Friese K (eds) Trace elements, their distribution and effects in the environment. Elsevier, Amsterdam, The Netherlands, pp 137–185Google Scholar
  17. Duvigneaud P, Denayer-De Smet S (1973) Biological cycling of minerals in temperate deciduous forests. Ecol Stud 1:199Google Scholar
  18. Elias C, De Nadai Fernandes EA, França EJ, Bacchi MA (2006) Seleção de epifitas acumuladoras de elementos químicos na Mata Atlãntica. Biota Neotropica, Campinas, 6, 1. Disponível em:>. Acesso em: 29 maio 2006
  19. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung, Ergebnisse des Solling ­Projektes. Ulmer, StuttgartGoogle Scholar
  20. Fargašová A, Beinrohr E (1998) Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+, and Cu2+ in under- and above-ground parts of Sinapis alba. Chemosphere 36:1305–1317CrossRefGoogle Scholar
  21. Farago ME (ed) (1994) Plants and the chemical elements. VCH, WeinheimGoogle Scholar
  22. Figueiredo AMG, Saiki M, Ticianelli RB, Domingos M, Alves ES, Markert B (2001) Determination of trace elements in Tillandsia usneoides by neutron activation analysis for environmental biomonitoring. J Radioanal Nucl Chem 249(2):391–395CrossRefGoogle Scholar
  23. Fomin A, Oehlmann J, Markert B (2003) Praktikum zur Ökotoxikologie. Grundlagen und Anwendungen biologischer Testverfahren. Ecomed Verlagsgesellschaft, LandsbergGoogle Scholar
  24. Fraenzle O (1993) Contaminants in terrestrial environments. Springer, BerlinGoogle Scholar
  25. Fraenzle S, Markert B (2002) The biological system of the elements (BSE) – a brief introduction into historical and applied aspects with special reference on “ecotoxicological identity cards” for different element species (e.g. As and Sn). Environ Pollut 120(1):27–45CrossRefGoogle Scholar
  26. Fraenzle S, Markert B (2007) Metals in biomass: from the biological system of elements to ­reasons of fractionation and element use. Environ Sci Pollut Res 6:404–413CrossRefGoogle Scholar
  27. Fraenzle S, Markert B, Wuenschmann S (2007) Dynamics of trace metals in organisms and ­ecosystem: prediction of metal bioconcentration in different organisms and estimation of exposure risks. Environ Pollut 150:22–33Google Scholar
  28. Fraenzle S, Markert B, Fraenzle O, Lieth H (2008) The biological system of elements: trace ­element concentration and abundance in plants give hints on biochemical reasons of sequestration an essentiality. In: Prasad MNV (ed) Trace elements – nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 1–22Google Scholar
  29. Fraenzle S (2009) Prinzipien und Mechanismen der Verteilung und Essentialität von chemischen Elementen in pflanzlicher Biomasse – Ableitungen aus dem Biologischen System der Elemente. Habilitation Thesis, University of VechtaGoogle Scholar
  30. França EJ, De Nadai Fernandes EA, Bacchi MA, Rodrigues RR, Verburg TG (2005) Inorganic chemical composition of native trees of the Atlantic Forest. Environ Monitor Assess Dordrecht 102:349–357CrossRefGoogle Scholar
  31. França EJ, De Nadai Fernandes EA, Bacchi MA, Tagliaferro FS, Saiki M (2007) Soil-leaf transfer of chemical elements for the Atlantic Forest. Radio Nucl Chem 271(2):405–411CrossRefGoogle Scholar
  32. Franzering J, Van der Eerden LJM (2000) Accumulation of persistent organic pollutants (POPs) in plants. Basic Appl Ecol 1:25–30CrossRefGoogle Scholar
  33. Freitas MC, Reis M, Alves LC, Wolterbeek HT (1999) Distribution in Portugal of some pollutants in the lichen Parmelia sulcata. Environ Pollut 106:229PubMedCrossRefGoogle Scholar
  34. Freitas MC, Pacheco AMG, Vieira BJ, Rodrigues AF (2006) Neutron activation analysis of ­atmospheric biomonitors from the Azores: a comparative study of lower and higher plants. Radio Nucl Chem 270:21–27CrossRefGoogle Scholar
  35. Garty J (1998) Airborne elements, cell membranes, and chlorophyll in transplanted lichens. Environ Qual 27:973CrossRefGoogle Scholar
  36. Genßler L, Rademacher J, Rammert U (2001) Arbeitskreis der Landesanstalten und -ämter: Konzeption der künftigen Aufgabenbereiche. Z Umweltchem Ökotox 13(6):375CrossRefGoogle Scholar
  37. Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schroeder P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. Soil Sediments 4:133–140CrossRefGoogle Scholar
  38. Greger M (2008) Trace elements and radionuclides in edible plants, chapter 6. In: Prasad MNV (ed) Trace elements – nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 121–136Google Scholar
  39. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kraemer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):391–396PubMedCrossRefGoogle Scholar
  40. Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390(1):35–44PubMedCrossRefGoogle Scholar
  41. Herpin U, Markert B, Weckert V, Berlekamp J, Friese K, Siewers U, Lieth H (1997) Retrospective analysis of heavy metal concentrations at selected locations in the Federal Republic of Germany using moss material from herbarium. Sci Total Environ 205:1–12CrossRefGoogle Scholar
  42. Herpin U, Siewers U, Kreimes K, Markert B (2001) Biomonitoring – evaluation and assessment of heavy metal concentrations from two German moss surveys. In: Burga CA, Kratochwil A (eds) General and applied aspects on regional and global scales, vol 35, Tasks for vegetation science. Kluwer, Dordrecht, The Netherlands, pp 73–95Google Scholar
  43. Herzig R (1993) Multi-residue analysis with passive biomonitoring: a new approach for volatile multi-element contents, heavy metals and polycyclic aromatic hydrocarbons with lichens in Switzerland and the principality of Liechtenstein. In: Markert B (ed) Plants as biomonitors for heavy metal pollution in the terrestrial environment. VCH-Verlagsgesellschaft, Weinheim, pp 285–328Google Scholar
  44. Herzig R, Bieri C (2002) Persistente organische Luftschadstoffe (POPs) in der Schweiz. Umweltmaterialien Nr. 146 Luft, Schweiz, Bundesamt für Umwelt, BAFU, CH-3003 Bern.
  45. Herzig R (2005) Erfolgskontrolle zur Luftreinhaltung in der Stadt Bern 2004 Wiederholung der Untersuchungen mit Flechten nach 14 Jahren. Schlussbericht, 20.10.05 Stadt Bern Amt für Umweltschutz und Lebensmittelkontrolle, Bern: SwitzerlandGoogle Scholar
  46. Irtelli B, Navari-Izzo F (2008) Uptake kinetics of different arsenic species by Brassica carinata. Plant Soil 303(1):105–113CrossRefGoogle Scholar
  47. Jeran Z, Smodis B, Jacimovic R (1993) Multielemental analysis of transplanted lichens (Hypogymnia physodes, L. Nyl.) by instrumental neutron activation analysis. Acta Chim Slov 40:289–299Google Scholar
  48. Jusatz HJ (1958) Die Bedeutung der landschaftsökologischen Analyse für geographisch-medizinische Forschung. Erdkunde XII:284–289Google Scholar
  49. Jusatz HJ, Flohn H (1937) Geomedizin und Geographie. Petermanns Geogr Mitt 83:1–5Google Scholar
  50. Kettrup A (2003) Environmental specimen banking. In: Markert B, Breure A, Zechmeister H (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, pp 775–796CrossRefGoogle Scholar
  51. Klumpp A, Domingos M, Pignata ML (2000) Air pollution and vegetation damage in South America – state of knowledge and perspectives. In: Agrawal SB, Agrawal MA (eds) Environmental pollution and plant responses. Lewis, Boca Raton, FL/LondonGoogle Scholar
  52. Kostka-Rick R, Leffler US, Markert B, Herpin U, Lusche M, Lehrke J (2001) Biomonitoring zur wirkungsbezogenen Ermittlung der Schadstoffbelastungen in terrestrischen Ökosystemen. Konzeption, Durchführung und Beurteilungsmaßstäbe im Rahmen von Genehmigungs-verfahren. UWSF-Z Umweltchem Ökotox 13(1):5–12CrossRefGoogle Scholar
  53. Lepp NW, Madejon P (2007) Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil. J Environ Qual 36(4):1123–1131PubMedCrossRefGoogle Scholar
  54. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat ­supplied with selenate or selenite. New Phytol 178(1):92–102PubMedCrossRefGoogle Scholar
  55. Lieth H (1998) Ecosystem principles for ecotoxicological analyses. In: Schüürmann G, Markert B (eds) Ecotoxicology – ecological fundamentals, chemical exposure and biological effects. Wiley/Spectrum Akademischer Verlag, New York/Stuttgart, pp 17–73Google Scholar
  56. Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Bio-geochemistry of a ­forested ecosystem. Springer, BerlinGoogle Scholar
  57. Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with ­thermal springs and fumarole activity (Mt. Amiata, Italy). Chemosphere 41:1333–1336PubMedCrossRefGoogle Scholar
  58. Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of Cd accumulation and sensitivity. Physiol Plantarum 120:537–545CrossRefGoogle Scholar
  59. Markert B (ed) (1993) Plants as biomonitors – indicators for heavy metals in the terrestrial ­environment. VCH, WeinheimGoogle Scholar
  60. Markert B, Weckert V (1993) Time-and-site integrated long-term biomonitoring of chemical ­elements by means of mosses. Toxicol Environ Chem 40:43–56CrossRefGoogle Scholar
  61. Markert B (1994) The biological system of the elements (BSE) for terrestrial plants (glycophytes). Sci Total Environ 155:221–228CrossRefGoogle Scholar
  62. Markert B (ed) (1996) Instrumental element and multi-element analysis of plant samples. Wiley-VCH, WeinheimGoogle Scholar
  63. Markert B, Oehlmann J, Roth M (1997) General aspects of heavy metal monitoring by plants and animals. In: Subramanian G, Iyengar V (eds) Environmental biomonitoring – exposure assessment and specimen banking, ACS Symposium, vol 654. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  64. Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment. Radio Nucl Chem 240:425–429CrossRefGoogle Scholar
  65. Markert B, Fraenzle S, Fomin A (2002) From the biological system of the elements to biomonitoring. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  66. Markert B, Breure A, Zechmeister H (eds) (2003a) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  67. Markert B, Breure A, Zechmeister H (2003b) Definitions, strategies and principles for ­bioindication / biomonitoring of the environment. In: Markert B, Breure A, Zechmeister H (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, The Netherlands, pp 3–39CrossRefGoogle Scholar
  68. Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elements Med Biol 21(1):77–82CrossRefGoogle Scholar
  69. Markert B, Wuenschmann S, Fraenzle S, Wappelhorst O, Weckert V, Breulmann G, Djingova R, Herpin U, Lieth H, Schroeder W, Siewers U, Steiness E, Wolterbeek B, Zechmeister H (2008) On the road from environmental biomonitoring to human health aspects: monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: present status and future needs. Environ Pollut 32(4):486–498CrossRefGoogle Scholar
  70. Markert B, Wuenschmann S, Herzig R, Quevauviller P (2010) Bioindicateurs et biomoniteurs dans l´environnment: définitions, stratégies et applications, (ed) Techniques de l`Ingénieur 4170:1–16.Google Scholar
  71. Marmiroli N, Maestri E (2008) Health implications of trace elements in the environment and the food chain, chapter 2. In: Prasad MNV (ed) Trace elements – nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 23–54Google Scholar
  72. Marquard H, Schaefer S (eds) (2004) Lehrbuch der Toxikologie. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, p 1348Google Scholar
  73. Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144(1):51–61PubMedCrossRefGoogle Scholar
  74. Mohr K (2007) Biomonitoring von Stickstoffimmissionen – Möglichkeiten und Grenzen von ­Bioindikationsverfahren. Umweltwiss Schadst Forsch 19:255–264CrossRefGoogle Scholar
  75. Mueller P (1980) Biogeographie. UTB, Ulmer-Verlag, StuttgartGoogle Scholar
  76. Oehlmann J, Markert B (1997) Humantoxikologie. Eine Einführung für Apotheker, Ärzte, Natur- und Ingenieurwissenschaftler. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  77. Pacheco AMG, Freitas MC, Reis MA (2003) Trace-element measurements in atmospheric biomonitors – a look at the relative performance of INAA and PIXE on olive-tree bark. Nucl Instrum Methods Phys Res A 505:425–429CrossRefGoogle Scholar
  78. Poschenrieder C, Allué J, Tolra R, Llugany M, Barcelo J (2008) Trace elements and plant secondary metabolism: quality and efficacy of herbal products, chapter 5. In: Prasad MNV (ed) Trace elements – nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 99–120Google Scholar
  79. Prasad MNV (ed) (2008) Trace elements as contaminants and nutrients. Consequences in ecosystems and human health. Wiley, New York, p 778Google Scholar
  80. Quartacci MF, Irtelli B, Baker AJM, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68(10):1920–1928PubMedCrossRefGoogle Scholar
  81. Quevauviller P, Maier EA (1999) Interlaboratory studies and certified reference materials for environmental analysis – the BCR approach. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  82. Quevauviller P, Borchers U, Thompson C, Simonart T (eds) (2008) The Water Framework Directive. Ecological and chemical status monitoring water quality measurements. Wiley, New YorkGoogle Scholar
  83. Renella G, Mench M, Van der Lelie D, Pietramellara G, Ascher J, Ceccherini MT, Landi L, Nannipieri P (2004) Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol Biochem 36:443–451CrossRefGoogle Scholar
  84. Rasemann W, Markert B (1998) Industrial waste dumps – sampling and analysis. In: Meyers R (ed) Encyclopedia of environmental analysis and remediation, vol 4. Wiley, New York, pp 2356–2373Google Scholar
  85. Rezek J, in der Wiesche C, Mackova M, Zadrazil F, Macek T (2008) The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere 70(9):1603–1608PubMedCrossRefGoogle Scholar
  86. Roots EF (1992) Environmental information – a step to knowledge and understanding. Environ Monitor Assess 50(4):87–94CrossRefGoogle Scholar
  87. Roots EF (1996) Environmental information – autobahn or maze? In: Schroeder W, Fraenzle O, Keune H, Mandy P (eds) Global monitoring of terrestrial ecosystem. Ernst & Sohn für Architektur und technische Wissenschaften GmbH, Berlin, pp 3–31Google Scholar
  88. Rutgers M, Van’t Verlaat I, Wind B, Posthuma L, Breure AM (1998) Rapid method for assessing pollution-induced community tolerance in contaminated soil. Environ Toxicol Chem 17:2210CrossRefGoogle Scholar
  89. Saiki M, Chaparro CG, Vasconcellos MBA, Marcelli MP (1997) Determination of trace elements in lichens by instrumental neutron activation analysis. Radioanal Nucl Chem Budapest 217(1):111–115CrossRefGoogle Scholar
  90. Schroeder P, Navarro-Avino J, Azaizeh H, Golan-Goldhirsh A, Di Gregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res 14(7):490–497CrossRefGoogle Scholar
  91. Schroeder P, Daubner D, Maier H, Neustifter J, Debus R (2008a) Phytoremediation of organic xenobiotics – glutathione dependent detoxification in Phragmites plants from European ­treatment sites. Bioresour Technol 99(15):7183–7197CrossRefGoogle Scholar
  92. Schroeder P, Herzig R, Bojinov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008b) Bioenergy to save the world – producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res 15(3):196–204CrossRefGoogle Scholar
  93. Schroeder W, Hornsmann I, Pesch R, Schmidt G, Fraenzle S, Wuenschmann S, Heidenreich H, Markert B (2008c) Moosmonitoring als Spiegel der Landnutzung? Stickstoff- und Metallakkumulation zweier Regionen Mitteleuropas. Z Umweltchem Ökotox 20(1):62–74CrossRefGoogle Scholar
  94. Schwarz OJ, Jonas WL (1997) Bioaccumulation of xenobiotic organic chemicals by terrestrial plants, Chapter 14. In: Wang W, Gorsuch JW, Hughes J (eds) Plants for environmental studies. CRC Press, Boca Raton, FL, pp 417–449Google Scholar
  95. Schweinfurth U (1974) Geoökologische Überlegungen zur geomedizinischen Forschung. Fortschritte der geomedizinischen Forschung, Geogr Z Beihefte 1974:30–43Google Scholar
  96. Schwitzguébel JP, Braillard S, Page V, Aubert S (2008) Accumulation and transformation of ­sulfonated aromatic compounds by higher plants – toward the phytotreatment of wastewater from dye and textile industries, Chapter 16. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer-Verlag, BerlinGoogle Scholar
  97. Shtangeeva I, Ayrault S, Jain J (2005) Thorium uptake by wheat at different stages of plant growth. Environ Radioact Bark 81:283–293CrossRefGoogle Scholar
  98. Siewers U, Herpin U (1998) Schwermetalleinträge in Deutschland. Moos-Monitoring 1995/96. Geol Jb, Sonderheft SD, Hannover 2:1–200Google Scholar
  99. Siewers U, Herpin U, Strassburg S (2000) Schwermetalleinträge in Deutschland. Teil 2: Moos-Monitoring 1995/1996Geol Jb, Sonderheft SD, Hannover, 3:1–121Google Scholar
  100. Smeets K, Ruytinx J, Van Belleghem F, Semane B, Lin D, Vangronsveld J, Cuypers A (2008) Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiol Biochem 46(2):212–218PubMedCrossRefGoogle Scholar
  101. Smodis B (2003) IAEA approaches to assessment of chemical elements in atmosphere. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Principles, concepts and applications. Elsevier, Amsterdam, The Netherlands, pp 875–902CrossRefGoogle Scholar
  102. Stoeppler M, Duerbeck HW, Nuernberg HW (1982) Environmental specimen banking. Talanta 29:963PubMedCrossRefGoogle Scholar
  103. Suchara I, Sucharova J, Hola M (2007) Bio-Monitoring of the atmospheric deposition of elements using moss analysis in the Czech Republic. Acta Pruhoniciana 87:186Google Scholar
  104. Szárazová K, Fargašová A, Hiller E, Velická Z, Pastierová J (2008) Phytotoxic effects and ­translocation of Cr and Ni in washing wastewaters from cutlery production line to mustard (Sinapis alba L.) seedlings. Fresenius Environ Bull 17:58–65Google Scholar
  105. Trapp S, Feificova D, Rasmussen NF, Bauer-Gottwein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ Exp Bot 64(1):1–7CrossRefGoogle Scholar
  106. Vtorova V, Kholopova L, Markert B, Leffler U (2001) Multi-elemental composition of tropical plants and bioindication of the environmental status. In: Biogeochemistry and geochemical ecology: selected presentations of the 2nd Russian School of Thought: Geochemical Ecology and the Biogeochemical Study of Taxons of the Biosphere, Moscow, 25–29 Jan 1999, pp 177–189Google Scholar
  107. Vutchkov M (2001) Biomonitoring of air pollution in Jamaica through trace-element analysis of epiphytic plants using nuclear and related analytical techniques. In: Co-ordinated research project on validation and application of plants as biomonitors of trace element atmospheric pollution, analyzed by nuclear and related techniques, IAEA, NAHRES-63, ViennaGoogle Scholar
  108. Verbruggen N, Hermans Ch, Schat H (2008) Molecular mechanisms of metal hyperaccumulation and tolerance in plants. New Phytol. doi:10.1111/j.1469-8137.2998.02748xGoogle Scholar
  109. Verkleij JAC (2008) Mechanisms of metal hypertolerance and (hyper)accumulation in plants. Agrochimica 52(3):167–188Google Scholar
  110. Warren A, Harrison CM (1984) People and the ecosystem: biogeography as a study of ecology and culture. Geoforum 15:365–381CrossRefGoogle Scholar
  111. Wittig R (1993) General aspects of biomonitoring heavy metals by plants. In: Markert B (ed) Plants as biomonitors – Indicators for heavy metals in the terrestrial environment. VCH, Weinheim, pp 3–27Google Scholar
  112. Wolterbeek HT, Kuik P, Verburg TG, Herpin U, Markert B, Thöni L (1995) Moss interspecies comparisons in trace element concentrations. Enviro Moni Assess 35:263–286CrossRefGoogle Scholar
  113. Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut London 120:11–21CrossRefGoogle Scholar
  114. Wuenschmann S, Oehlmann J, Delakowitz B, Markert B (2001) Untersuchungen zur Eignung wildlebender Wanderratten (Rattus norvegicus) als Indikatoren der Schwermetallbelastung, Teil 1. UWSF-Z Umweltchem Ökotox 13(5):259–265CrossRefGoogle Scholar
  115. Wuenschmann S, Oehlmann J, Delakowitz B, Markert B (2002) Untersuchungen zur Eignung wildlebender Wanderratten (Rattus norvegicus) als Indikatoren der Schwermetallbelastung, Teil 2. UWSF-Z Umweltchem Ökotox 14(2):96–103CrossRefGoogle Scholar
  116. Wuenschmann S, Fränzle S, Markert B, Zechmeister H (2008) Input and transfer of trace metals from food via mothermilk to the child: bioindicative aspects to human health, Chapter 22. In: Prasad MNV (ed) Trace elements – nutritional benefits, environmental contamination, and health implications. Wiley, New York, pp 555–592Google Scholar
  117. Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar Scharf S (2007) Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment. Austria Embv Sci Poll Res 13:398–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Lehrstuhl für UmweltverfahrenstechnikZittauGermany
  2. 2.Haren/ErikaGermany

Personalised recommendations