Candidatus Midichloria mitochondrii’, formerly IricES1, a symbiont of the tick Ixodes ricinus that resides in the host mitochondria

  • D. Sassera
  • T. Beninati
  • S. Epis
  • C. Bandi
  • L. Beati
  • M. Montagna
  • M. Alba
  • C. Genchi
  • L. Sacchi
  • N. Lo
Conference paper

Abstract

Intracellular bacteria are widespread in nature and may adopt a wide array of life styles. They can be found free in the cytoplasm of their host cells, within host-derived vacuoles, or even in the nucleus. Here, we review current knowledge about ‘Candidatus Midichloria mitochondrii’, an intracellular bacterium that invades the host mitochondria in the ixodid tick Ixodes ricinus. This bacterium was first detected by electron microscopy in two independent studies, published in, 1979 and, 1992, that showed it in the cells of the ovary in adult ticks and also in the cells of the ovarian primordia in larvae and nymphs. This symbiont resides not only in the cytoplasm, but also inside the mitochondria of the ovarian cells, where it appears to penetrate the outer mitochondrial membrane and colonize the intermembrane space. Molecular studies have recently been performed, addressing the phylogenetic position, transmission, and prevalence of this novel bacterium. The functional significance of this symbiotic association has yet to be revealed. Even though ‘Candidatus M. mitochondrii’ seems to behave as a ‘predator’ towards the host mitochondria, this does not appear to interfere with egg development, thus ensuring the vertical transmission of the bacteria to the progeny. The 100% prevalence in the ovaries of females of I. ricinus may indicate a mutualistic association, whereas the peculiar intramitochondrial localization suggests that ‘Candidatus M. mitochondrii’ might be exploiting the energy available in the mitochondrial environment. The possibility that the bacterium is a reproductive parasite should also be considered.

Key words

Intracellular bacteria vertical transmission mutualism reproductive parasite Rickettsiales 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson SG, Zomorodipour A, Andersson JO et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.CrossRefPubMedGoogle Scholar
  2. Andersson JO & Andersson SG (2000) A century of typhus, lice and Rickettsia. Res Microbiol 151: 143–150.CrossRefPubMedGoogle Scholar
  3. Bandi C, Trees AJ & Brattig NW (2001) Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 98: 215–238.CrossRefPubMedGoogle Scholar
  4. Bandi C, Dunn AM, Hurst GD & Rigaud T (2001) Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol 17: 88–94.CrossRefPubMedGoogle Scholar
  5. Beninati T, Lo N, Sacchi L et al. (2004) A novel alpha-proteobacterium resides in the mitochondria of ovarian cells of the tick Ixodes ricinus. Appl Environ Microbiol 70: 2596–2602.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Davidov Y, Friedjung A & Jurkevitch E (2006) Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol 8: 1667–1673.CrossRefPubMedGoogle Scholar
  7. De Bary A (1879) Die Erscheinung der Symbiose. Privately printed in Strasburg, France.Google Scholar
  8. de Puytorac P & Grain J (1972) [Intramitochondrial bacteria and pecularities of cytostomopharyngeal ultrastructure in the ciliate, Urotricha ovata Kahl (Ciliata)]. C R Seances Soc Biol Fil 166: 604–607.PubMedGoogle Scholar
  9. Epis S, Sassera D, Beninati T et al. (2008) Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology 135:, 485–494.CrossRefPubMedGoogle Scholar
  10. Fokin SI, Schweikert M, Gortz HD & Fujishima M (2003) Bacterial endocytobionts of Ciliophora. Diversity and some interactions with the host. Eur J Protistol 39: 475–480.CrossRefGoogle Scholar
  11. Fritsche TR, Horn M, Seyedirashti S et al. (1999) In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phyloge- netically related to members of the order Rickettsiales. Appl Environ Microbiol 65:, 206–212.PubMedPubMedCentralGoogle Scholar
  12. Huigens ME, de Almeida RP, Boons PA et al. (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesisinducing Wolbachia in Trichogramma wasps. Proc Roy Soc Lond B 271: 509–515.CrossRefGoogle Scholar
  13. Hurst LD & McVean GT (1996) Clade selection, reversible evolution and the persistence of selfish elements: the evolutionary dynamics of Cytoplasmic Incompatibility. Proc Roy Soc Lond B 263: 97–104.CrossRefGoogle Scholar
  14. Lawen A (2003) Apoptosis-an introduction. Bioessays 25: 888–896.CrossRefPubMedGoogle Scholar
  15. Leninger D & Cox M (2001) Principles of Biochemistry, 3rd edn. Worth Publications, New York, NY, USA.Google Scholar
  16. Lewis D (1979) The detection of rickettsia-like microorganisms within the ovaries of female Ixodes ricinus ticks. Z Parasitenkd 59: 295–298.CrossRefPubMedGoogle Scholar
  17. Lo N, Beninati T, Sassera D et al. (2006a) Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. Environ Microbiol 8: 1280–1287.CrossRefPubMedGoogle Scholar
  18. Lo N, Beninati T, Sacchi L & Bandi C (2006b) An alpha-proteobacterium invades the mitochondria of the tick Ixodes ricinus. Insect Symbiosis II (ed. by K Bourtzis & T Miller), pp. 25–37. CRC Press, Boca Raton, FL, USA.Google Scholar
  19. Narita S, Nomura M, Kato Y & Fukatsu T (2006) Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol 15: 1095–1108.CrossRefPubMedGoogle Scholar
  20. O’Neill SL, Hoffmann AA & Werren JH (1998) Influential Passengers; Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, Oxford, UK.Google Scholar
  21. Parola P & Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32: 897–928.CrossRefPubMedGoogle Scholar
  22. Sacchi L, Bigliardi E, Corona S et al. (2004) A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue Cell 36: 43–53.CrossRefPubMedGoogle Scholar
  23. Sassera D, Beninati T, Bandi C et al. (2006) ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Intern J Syst Evol Microbiol 56: 2535–2540.CrossRefGoogle Scholar
  24. Soneshine D (1991) Biology of Ticks, Vol. 1. Oxford University Press, Oxford, UK.Google Scholar
  25. Yamataka S & Hayashi R (1970) Electron microscopic studies on the mitochondria and intramitochondrial microorganisms of Halteria geleiana. J Electron Microsc 19: 50–62.Google Scholar
  26. Zhu Z, Aeschlimann A & Gern L (1992) Rickettsia-like microorganisms in the ovarian primordia of molting Ixodes ricinus (Acari: Ixodidae) larvae and nymphs. Ann Parasitol Hum Comp 67: 99–110.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • D. Sassera
    • 1
  • T. Beninati
    • 2
  • S. Epis
    • 1
  • C. Bandi
    • 1
  • L. Beati
    • 3
  • M. Montagna
    • 1
  • M. Alba
    • 1
  • C. Genchi
    • 1
  • L. Sacchi
    • 4
  • N. Lo
    • 2
  1. 1.DIPAV, Sezione di Patologia Generale e ParassitologiaUniversità di MilanoMilanItaly
  2. 2.School of Biological SciencesUniversity of SydneySydneyAustralia
  3. 3.Institute of Arthropodology and ParasitologyGeorgia Southern UniversityStatesboroUSA
  4. 4.Dipartimento di Biologia AnimaleUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations