Advertisement

From sequence to phoresy – molecular biology in acarology

  • Hans Klompen
Conference paper

Abstract

First of all, I would like to thank Maurice Sabelis and the organizing committee of the International Congress for the honor of being invited to present this address. When Maurice invited me to give this address he suggested I stick with the general theme of this congress, ecology and genomics. I had a brief moment of doubt, I do not actually work on either genomics or ecology, and so I decided to broaden the topic to the impact of molecular biology on acarology. More specifically, to use this occasion to emphasize and celebrate some areas where molecular biology has allowed us to make significant advances. Acarology is clearly following in the footsteps of other disciplines in rapidly integrating molecular data and methods in all aspects of research. Anybody doubting this should check the listing of presentations at this congress. In presenting these comments I should stress that in selecting developments to highlight, I have tried to cover a range, but I lay no claim to being comprehensive. These are my choices, reflecting my biases.

Keywords

Mitochondrial Genome Oribatid Mite Entomopathogenic Nematode Water Mite Small Subunit rRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson DL & Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24: 165–189.CrossRefPubMedGoogle Scholar
  2. Athias-Binche F & Morand S (1993) From phoresy to parasitism: an example of mites and nematodes. Res. Rev. Parasitol. 53: 73–79.Google Scholar
  3. Bailly X, Migeon A & Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol. J. Linn. Soc. 82: 69–78.CrossRefGoogle Scholar
  4. Black IV WC & Roehrdanz RL (1999) Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Mol. Biol. Evol. 15: 1772–1785.CrossRefGoogle Scholar
  5. Bochkov, AV, OConnor, BM & Wauthy, G (2008) Phylogenetic position of the mite family Myobiidae within the infraorder Eleutherengona (Acariformes) and origins of parasitism in eleutherengone mites. Zool. Anz. 247: 15–45.CrossRefGoogle Scholar
  6. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27: 1767–1780.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Breeuwer JAJ & Jacobs G (1996) Wolbachia: intracellular manipulators of mite reproduction. Exp. Appl. Acarol. 20: 421–434.CrossRefPubMedGoogle Scholar
  8. Campbell NJH & Barker SC (1998) An unprecedented major rearrangement in an arthropod mitochondrial genome. Mol. Biol. Evol. 15: 1786–1787.CrossRefPubMedGoogle Scholar
  9. Carew ME, Goodisman MAD & Hoffmann AA (2004) Species status and population genetic structure of grapevine eriophyoid mites. Entomol. Exp. Appl. 111: 87–96.CrossRefGoogle Scholar
  10. Childers CC, Rodrigues JCV, Derrick KS et al., (2003) Citrus leprosies and its status in Florida and Texas: Past and present. Exp. Appl. Acarol. 30: 181–202.CrossRefPubMedGoogle Scholar
  11. Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst. Appl. Acarol. 7: 3–14.CrossRefGoogle Scholar
  12. Cruickshank RH & Thomas RH (1999) Evolution of haplodiploidy in dermanyssine mites (Acari: Mesostigmata). Evolution 53: 1796–1803.CrossRefGoogle Scholar
  13. Dabert J, Dabert M & Mironov SV (2001) Phylogeny of feather mite subfamily Avenzoariinae (Acari: Analgoidea: Avenzoariidae) inferred from combined analyses of molecular and morphological data. Mol. Phylogenet. Evol. 20: 124–135.CrossRefPubMedGoogle Scholar
  14. Denegri GM (1993) Review of oribatid mites as intermediate hosts of the Anoplocephalidae. Exp. Appl. Acarol. 17: 567–580.CrossRefGoogle Scholar
  15. Evans JD & Lopez DL (2002) Complete mitochondrial DNA sequence of the important honey bee pest, Varroa destructor (Acari: Varroidae). Exp. Appl. Acarol. 27: 69–78.CrossRefPubMedGoogle Scholar
  16. van der Geest LPS, Elliot SL, Breeuwer JAJ & Beerling EAM (2000) Diseases of mites. Exp. Appl. Acarol. 24: 497–560.CrossRefPubMedGoogle Scholar
  17. Giribet G, Edgecombe GD & Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413: 157–161.CrossRefPubMedGoogle Scholar
  18. Giribet G, Edgecombe GD, Wheeler WC & Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18: 5–70.PubMedGoogle Scholar
  19. Gotoh T, Noda H & Hong X-Y (2003) Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity 91: 208–216.CrossRefPubMedGoogle Scholar
  20. Gotoh T, Noda H, Fujita T et al. (2005) Wolbachia and nuclearnuclear interactions contribute to reproductive incompatibility in the spider mite Panonychus mori (Acari: Tetranychidae). Heredity 94: 237–246.CrossRefPubMedGoogle Scholar
  21. Haumann G (1991) Zur Phylogenie primitiver Oribatiden, Acari: Oribatida. DBV Verlag für die Technische Universität Graz, Graz, Austria.Google Scholar
  22. Heethoff M, Maraun M & Scheu S (2002) Ancient parthenogenetic species: Methods for detection and a candidate from oribatid mites. Zoology 105: 25.CrossRefGoogle Scholar
  23. Hofstetter RW, Cronin JT, Klepzig KD et al. (2006) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147: 679–691.CrossRefPubMedGoogle Scholar
  24. Houck MA & Cohen AC (1995) The potential role of phoresy in the evolution of parasitism: Radiolabelling (tritium) evidence from an astigmatid mite. Exp. Appl. Acarol. 19: 677–694.CrossRefGoogle Scholar
  25. Hoy MA & Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol. Contr. 32: 427–441.CrossRefGoogle Scholar
  26. Jeyaprakash A & Hoy MA (2004) Multiple displacement amplification in combination with high-fidelity PCR improves detection of bacteria from single females or eggs of Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). J. Invert. Pathol. 86: 111–116.CrossRefGoogle Scholar
  27. Klimov, PB & OConnor, BM (2008) Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): Evidence from three nuclear genes. Mol. Phylogen. Evol. 47: 1135–1156.CrossRefGoogle Scholar
  28. Klompen H (2000) A preliminary assessment of the utility of elongation factor-1α in elucidating relationships among basal Mesostigmata. Exp. Appl. Acarol. 24: 805–820.CrossRefPubMedGoogle Scholar
  29. Klompen H, Lekveishvili MG & Black IV WC (2007) Phylogeny of Parasitiform mites (Acari) based on rDNA. Mol. Phylogen. Evol. 43: 936–951.CrossRefGoogle Scholar
  30. Klompen JSH, Black IV WC, Keirans JE & Norris DE (2000) Systematics and biogeography of hard ticks, a total evidence approach. Cladistics 16: 79–102.CrossRefGoogle Scholar
  31. Krantz GW & Walter DE (eds) (2009) A Manual of Acarology. Texas Tech University Press, Lubbock, TX, USA.Google Scholar
  32. Lekveishvili M & Klompen H (2004) Phylogeny of infraorder Sejina (Acari, Mesostigmata). Zootaxa 629: 1–19.Google Scholar
  33. Lindquist EE (1984) Current theories on the evolution of major groups of Acari and on their relationship with other groups of Arachnida, with consequent implications for their classification. Acarology VI, Vol. 1 (ed. by DA Griffiths & CE Bowman), pp. 28–62. Ellis Horwood, Chichester, UK.Google Scholar
  34. Lindquist EE (1986) The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family group taxa in the Heterostigmata. Mem. Entomol. Soc. Can. 136: 1–517.CrossRefGoogle Scholar
  35. Maraun M, Heethoff M, Schneider K et al. (2004) Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Exp. Appl. Acarol. 33: 183–201.CrossRefPubMedGoogle Scholar
  36. Martens K, Rossetti G & Horne DJ (2003) How ancient are ancient asexuals? Proc. R. Soc. Lond. B 270: 723–729.CrossRefGoogle Scholar
  37. McCoy KD, Tirard C & Michalakis Y (2003) Spatial genetic structure of the ectoparasite Ixodes uriae within breeding cliffs of its colonial seabird host. Heredity 91: 422–429.CrossRefPubMedGoogle Scholar
  38. McCoy KD, Chapuis E, Tirard C et al. (2005) Recurrent evolution of host-specialized races in a globally distributed parasite. Proc. R. Soc. Lond. B 272: 2389–2395.CrossRefGoogle Scholar
  39. Murrell A, Dobson SJ, Walter DE et al. (2005) Relationships among the three major lineages of the Acari (Arthropoda : Arachnida) inferred from small subunit rRNA: paraphyly of the parasitiformes with respect to the opilioacariformes and relative rates of nucleotide substitution. Invert. Syst. 19: 383–389.CrossRefGoogle Scholar
  40. Navajas M, Le Conte Y, Solignac M et al. (2002) The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata). Mol. Biol. Evol. 19: 2313–2317.CrossRefPubMedGoogle Scholar
  41. Navia D, De Moraes GJ, Roderick G & Navajas M (2005) The invasive coconut mite Aceria guerreronis (Acari : Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull. Entomol. Res. 95: 505–516.CrossRefPubMedGoogle Scholar
  42. Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. Mites: Ecological and Evolutionary Analyses of Life-History Patterns (ed. by MA Houck), pp. 99–135. Chapman & Hall, New York, NY, USA.CrossRefGoogle Scholar
  43. Norton RA (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp. Appl. Acarol. 22: 559–594.CrossRefGoogle Scholar
  44. Norton RA & Palmer SC (1991) The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites. The Acari. Reproduction, Development and Life History Strategies. (ed. by PW Murphy & R Schuster), pp. 107–136. Chapman and Hall, London, UK.Google Scholar
  45. OConnor BM (1984) Phylogenetic relationships among higher taxa in the Acariformes, with particular reference to the Astigmata. Acarology VI, Vol. 1 (ed. by DA Griffiths & CE Bowman), pp. 19–27. Ellis Horwood, Chichester, UK.Google Scholar
  46. Palmer SC & Norton RA (1991) Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the Desmonomata (Acari: Oribatida). Exp. Appl. Acarol. 12: 67–81.CrossRefGoogle Scholar
  47. Pegler KR, Evans L, Stevens JR & Wall R (2005) Morphological and molecular comparison of host-derived populations of parasitic Psoroptes mites. Med. Vet. Entomol. 19: 392–403.CrossRefPubMedGoogle Scholar
  48. Proctor HC & Garga N (2004) Red, distasteful water mites: Did fish make them that way? Exp. Appl. Acarol. 34: 127–147.CrossRefPubMedGoogle Scholar
  49. Ramey RR, Kelley ST, Boyce WM & Farrell BD (2000) Phylogeny and host specificity of psoroptic mange mites (Acarina: Psoroptidae) as indicated by ITS sequence data. J. Med. Entomol. 37: 791–796.CrossRefPubMedGoogle Scholar
  50. Reeves WK, Dowling APG & Dasch GA (2006) Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exp. Appl. Acarol. 38: 181–188.CrossRefPubMedGoogle Scholar
  51. Samish M & Rehácek J (1999) Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol. 44: 519–182.CrossRefGoogle Scholar
  52. Samish M, Alekseev E & Glazer I (2000) Mortality rate of adult ticks due to infection by entomopathogenic nematodes. J. Parasitol. 86: 679–684.CrossRefPubMedGoogle Scholar
  53. Schaefer I, Domes K, Heethoff M (2006) No evidence for the (Meselson effect( in parthenogenetic oribatid mites (Oribatida, Acari). J. Evol. Biol. 19: 184–193.CrossRefPubMedGoogle Scholar
  54. Shao R, Mitani H, Barker SC et al. (2005a) Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J. Mol. Evol. 60: 764–773.CrossRefPubMedGoogle Scholar
  55. Shao R, Barker SC, Mitani H et al. (2005b) Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with Australasian Ixodes. Mol. Biol. Evol. 22: 620–629.CrossRefPubMedGoogle Scholar
  56. Shao R, Aoki Y, Mitani H et al. (2004) The mitochondrial genomes of soft ticks have an arrangement of genes that has remained unchanged for over 400 million years. Insect Mol. Biol. 13: 219–224.CrossRefPubMedGoogle Scholar
  57. Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool. J. Linn. Soc. 150: 221–265.CrossRefGoogle Scholar
  58. Skoracki M, Michalik J, Skotarczak B, et al. (2006) First detection of Anaplasma phagocytophilum in quill mites (Acari : Syringophilidae) parasitizing passerine birds. Microbes Infection 8: 303–307.CrossRefPubMedGoogle Scholar
  59. Solignac M, Vautrin D, Pizzo A et al. (2003) Characterization of microsatellite markers for the apicultural pest Varroa destructor (Acari: Varroidae) and its relatives. Mol. Ecol. News 3: 556–559.CrossRefGoogle Scholar
  60. Tsagkarakou A, Navajas M, Rousset F & Pasteur N (1999) Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France. Exp. Appl. Acarol. 23: 365–378.CrossRefGoogle Scholar
  61. Vala F, Breeuwer JAJ & Sabelis MW (2000) Wolbachia-induced (hybrid breakdown( in the two-spotted spider mite Tetranychus urticae Koch. Proc. Roy. Soc. Lond. B 267: 1931–1937.CrossRefGoogle Scholar
  62. Vala F, Weeks A, Claessen D et al. (2002) Within- and between-population variation in Wolbachia-induced reproductive incompatibility. Evolution 56: 1331–1339.CrossRefPubMedGoogle Scholar
  63. Vala F, van Opijnen T, Breeuwer JAJ & Sabelis MW (2003) Genetic conflicts over sex ratio: mite-endosymbiont interactions. Am. Nat. 161: 254–266.CrossRefPubMedGoogle Scholar
  64. Valenzuela JG (2004) Exploring tick saliva: from biochemistry to ( sialomes ( and functional genomics. Parasitol. 129: S83-S94.CrossRefGoogle Scholar
  65. Walton SF, Dougall A, Pizzutto S et al. (2004) Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int. J. Parasitol. 34: 839–849.CrossRefPubMedGoogle Scholar
  66. Weeks AR, Marec F & Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292: 2479–2482.CrossRefPubMedGoogle Scholar
  67. Welch DM & Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215.CrossRefGoogle Scholar
  68. Whiteman NK, Kimball RT & Parker PG (2007). Co-phylogeography and comparative population genetics of the threatened Galapagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol. Ecol. 16: 4759–4773.CrossRefPubMedGoogle Scholar
  69. Whiteman NK, Sanchez P, Merkel J et al. (2006) Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies (Hippoboscidae) associated with two endemic Galapagos bird species. J. Parasitol. 92: 1218–1228CrossRefPubMedGoogle Scholar
  70. Xu G, Fang QQ, Keirans JE & Durden LA (2003) Cloning and sequencing of putative acetylcholinesterase cDNAs from the American dog tick, Dermacentor variabilis, and the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). J. Med. Entomol. 40: 890–896.CrossRefPubMedGoogle Scholar
  71. Xu G, Fang QQ, Keirans JE & Durden LA (2004) Ferritin gene coding sequences are conserved among eight hard tick species (Ixodida: Ixodidae). Ann. Entomol. Soc. Am. 97: 567–573.CrossRefGoogle Scholar
  72. Zahler M, Hendrikx WML, Essig A et al. (2000) Species of the genus Psoroptes (Acari: Psoroptidae): A taxonomic consideration. Exp. Appl. Acarol. 24: 213–225.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Ohio State University Acarology Collection, Museum of Biological DiversityColumbusUSA

Personalised recommendations