Adams HD, Guardiola-Claamonte M, Barron-Gafford G, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-of under global-change type drought. PNAS 106:7063–7066
PubMed
CrossRef
CAS
Google Scholar
Allen RG, Pereira LS, Raes D, Smith ML (1998) Crop evapotranspiration – guidelines for computing crop water requirements. FAO, Rome
Google Scholar
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger Th, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2009) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. doi:10.1016/j.foreco.2009.09.0001
Google Scholar
Aronson S, Lovinger R (1976) Yatir forest. In memory of Joseph Weitz. The Jewish National Fund, Land Development Authority, the Forest Department, Israel. (Hebrew with English summary)
Google Scholar
Atzmon N, Moshe Y, Schiller G (2004) Eco-physiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecol 171:15–22
CrossRef
Google Scholar
Bariteau M, Huc R, Vendramin GG (2000) Adaptation and selection of Mediterranean Pinus and Cedrus for sustainable afforestation of marginal lands (MPC). Final Report to the Commission of the European Communities, Directorate General for Agriculture, DGVI FII3, Contract no FAIR CT95-0097, 181 pp
Google Scholar
Barnes J, Gimeno B, Davison A, Dizengremel P, Gerant D, Bussotti F, Velissariou D (2000) Air pollution impacts on Pine forests in the Mediterranean Basin. In: Ne’eman G, Trabaud L (eds) Biography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin. Backhuys, Leiden, pp 391–404
Google Scholar
Breshears DD, Myers OB, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman W (2009) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ. doi:10.1890/080016
Google Scholar
Cohen Y (1994) Thermoelectric methods for measurement of sap flow in plants. In: Stenhill G (ed) Advances in bioclimatology, vol 3. Springer, Heidelberg, Germany, pp 63–88
CrossRef
Google Scholar
Dan J, Raz Z (1970) The soil association map of Israel. Ministry of Agriculture, Department of scientific publications, 145 pp and two maps 1: 250,000 (In Hebrew)
Google Scholar
Danin A (1970) Phytosoziological-ecological monograph of the northern Negev, Israel. Ph.D. thesis, the Hebrew University of Jerusalem, Israel (in Hebrew with English summary)
Google Scholar
Grünwald C, Schiller G, Conkle MT (1986) Isoenzyme variation among native stands and plantations of Aleppo pine in Israel. Israel J Bot 35:161–174
Google Scholar
Grünzweig JM, Lin T, Rotenberg E, Schwartz A, Yakir D (2003) Carbon sequestration in arid-land forest. Global Change Biol 9:791–799
CrossRef
Google Scholar
Inclán R, Gimeno BS, Dizengremel P, Sanchez M (2005) Compensation processes of Aleppo pine (Pinus halepensis mill.) to ozone exposure and drought stress. Environ Pollut 137:517–524
PubMed
CrossRef
Google Scholar
IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007: The Physical Science Basis; Summary for Policy Makers, 21 pp. http://www.ipcc.ch
Google Scholar
Kafle HK, Brunis HJ (2009) Climatic trends in Israel 1970-2002: warmer and increasing aridity inland. Climate Change 96:63–77
CrossRef
Google Scholar
Klein T, Hemming D, Lin T, Grünzweig JM, Maseyk K, Rotenberg E, Yakir D (2005) Association between tree-ring and needle δ13C and leaf gas exchange in Pinus halepensis under semi-arid conditions. Oecologia 144:45–54
PubMed
CrossRef
Google Scholar
Korol L, Shklar G, Schiller G (2002) Diversity among circum-Mediterranean populations of Aleppo pine and differentiation from Brutia pine in their isoenzymes: Additional results. Silvae Genet 51:35–41
Google Scholar
Leshem B (1967) Adaptation of pine roots to an arid environment. Ph.D. thesis, the Hebrew University of Jerusalem, Israel (In Hebrew), 87 pp
Google Scholar
Lewontin RC (1972) The apportionment of human diversity Evol Biol 6:381–398
Google Scholar
Martinez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000) Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during Mediterranean summer. Tree Physiol 20:131–138
PubMed
CrossRef
CAS
Google Scholar
Maseyk, S K (2006) Eco-physiological and phonological aspects of Pinus halepensis in an arid-Mediterranean environment. Ph.D. thesis, the Scientific Council of the Weizmann Institute of Science, Rehovot, Israel, 142 pp
Google Scholar
Maseyk KS, Lin T, Rotenberg E, Grunzweig JM, Schwarz A, Yakir D (2008a) Physiology-phenology interaction in productive semi-arid pine forest. New Phytol. doi:10:1111/j.1469-8137.2008.02391.x
PubMed
Google Scholar
Maseyk KS, Grunzweig JM, Rotenberg E, Yakir D (2008b) Respiration acclimation contribution to high carbon-use efficiency in seasonally dry pine forest. Global Change Biol 14:1553–1567
CrossRef
Google Scholar
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb Th, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. doi:10.1111/j.1469-8137.2008.02436.x
PubMed
Google Scholar
Melzack RN, Bravdo B, Riov J (1985) The effect of water stress on photosynthesis and related parameters in Pinus halepensis Mill. Physiol Plant 64:295–300
CrossRef
Google Scholar
Merzer T (2007) The effects of different vegetative cover on the local hydrological balance of a semi-arid afforestation. M. Sc. thesis, Ben-Gurion University of the Negev, Israel
Google Scholar
Monteith JL (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms. Cambridge University Press, Cambridge, pp 205–234
Google Scholar
Morandini R (1976) Mediterranean conifers. In: Forest genetic resources, Information No 5. Forestry Occasional Paper 1976/1. FAO, Rome, Italy, pp 12–18
Google Scholar
Nei M (1978) Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89:583–590
Google Scholar
Oppenheimer HR (1955) Pénétration active des raciness de buissons méditerranéens dans les calcaires. Bull Res Counc 5D:219–222
Google Scholar
Oppenheimer HR (1957) Further observations on root penetration into rock and their structure. Bull Res Counc 6D:18–26
Google Scholar
Oppenheimer HR (1967) Mechanisms of drought resistance in conifers of the Mediterranean zone and the arid west of the USA. Part I: Physiological and anatomical investigations. Final Report on project No. A10-FS 7, Grant No. FG-Is-119. The Hebrew University of Jerusalem, Rehovot, Israel
Google Scholar
Paz S (2004) Desertification in the Eastern Mediterranean Basin: possible climatic explanation. In: Kliot N (ed) Studies in natural resources and environmental management 2(2): 7–17 (In Hebrew with English summary)
Google Scholar
Raz Yaseef N (2008) Partitioning the evapotranspiration flux of the Yatir semi-arid forest. Ph.D. thesis, the Scientific Council of the Weizmann Institute of Science, Rehovot, Israel, 124 pp
Google Scholar
Raz Yaseef N (2009) Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications on predicted precipitation changes. Ecohydrology. doi:10.1002/eco.65
Google Scholar
Roehle H (1991) Yield tables for Aleppo pine (Pinus halepensis) in Israel. Chair of Forest Yield Sciences, University of Munich, Federal Republic of Germany
Google Scholar
Safriel NU, Volis S, Kark S (1994) Core and peripheral populations and global climate change. Israel J Plant Sci 42:331–345
Google Scholar
Safriel N U (2005) Monitoring and Evaluation of Watersheds in the Middle-East. Final Scientific Report-Israel 2001–2005, Submitted to the USDA Forest Service, 191 pp
Google Scholar
Schiller G (1972) Decisive ecological factors affecting growth of Aleppo pine in the southern Judean hills. Leafl For Div Agric Res Organ, Ilanot No 44
Google Scholar
Schiller G (1982) Significance of bedrock as a site factor for Aleppo pine. For Ecol Manage 4:213–223
CrossRef
Google Scholar
Schiller G (2000) Ecophysiology of Pinus halepensis Mill. and P. brutia Ten. In: Ne’eman G, Trabaud L (eds) Biography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin. Backhuys, Leiden, pp 51–65
Google Scholar
Schiller G, Cohen Y (1995) Water regime of a pine forest under a Mediterranean climate. Agric For Meteorol 74:181–193
CrossRef
Google Scholar
Schiller G, Cohen Y (1998) Water balance of a Pinus halepensis Mill. afforestations in an arid region. For Ecol Manage 105:121–128
CrossRef
Google Scholar
Schiller G, Conkle MT, Grunwald C (1986) Local differentiation among Mediterranean populations of Aleppo pine in their isozymes. Silvae Genet 35:11–19
Google Scholar
Schiller G, Korol L, Atzmon N (2001) In: Final Report of the FORADAPT Project on: Global, physiological and molecular responses to climatic stresses of three Mediterranean conifers (pines of the halepensis-brutia section, maritime pine and Mediterranean cedars. The INCO-DC Program, Contract no. ERBIC-18CT-970-200
Google Scholar
Schiller G, Korol L, Shklar G (2004) Habitat effects on adaptive genetic variation in Pinus halepensis Mill. provenances. Forest Genetics 11:325–335
CAS
Google Scholar
Schiller G, Waisel Y (1989) Among-provenance variation in Pinus halepensis Mill. in Israel. For Ecol Manage 28:141–151
CrossRef
Google Scholar
Schiller G, Atzmon N (2009) Performance of Aleppo pine (Pinus halepensis) provenances grown at the edge of the Negev desert: a review. J Arid Environ 73:1051–1057
CrossRef
Google Scholar
Scholander PF, Hammel HT, Bradstreet ED, Hemminsen EA (1965) Sap pressure in vascular plants. Science 149:339–346
CrossRef
Google Scholar
Shachnovich Y, Berliner PB, Bar P (2008) Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone. J Hydrol 349:168–177
CrossRef
Google Scholar
Swanson RH, Whitfield DWA (1981) A numerical analysis of heat pulse velocity theory and practice. J Exp Bot 32:321–339
CrossRef
Google Scholar
Tognetti R, Michelozzi M, Giovannelli A (1997) Geographic variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances. Tree Physiol 17:241–250
PubMed
CrossRef
CAS
Google Scholar
UNESCO-FAO (1963) Bioclimatic map of the Mediterranean Zone, Arid Zone Research, Ecological investigations in the Mediterranean zone. FAO, Rome
Google Scholar
Van Mantgem PJ, Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in temperate forests. Ecol Lett 10:909–916
PubMed
CrossRef
Google Scholar
Yavlovich H (2008) Natural regeneration of Pinus halepensis forest in semi-arid regions. M.Sc thesis, The Hebrew University of Jerusalem, Israel
Google Scholar
Zohary M (1962) Plant life of Palestine, Israel and Jordan. The Ronald Press Co, New York
Google Scholar