Skip to main content

Forested Water Catchments in a Changing Environment

Part of the Ecological Studies book series (ECOLSTUD,volume 212)

Abstract

In the past, headwater catchments have often been studied to elucidate the effect of forests on the water cycle. This has been of interest since centuries and we recall here this historical context. We review the quantitative effects found in numerous studies around the world, especially those from paired-catchment experiments. As a rule, they indicate a lower water yield of forests compared to shorter vegetation types, which can be explained by their high evapotranspiration. Discharge peaks are thereby less affected by the vegetation type than low flows, while erosion is prevented by forests and other permanent soil cover. The quality of water obtained from forested catchments is high, in average better than under other land-uses. This high water quality is mainly the result of low inputs of pollutants rather than of an active cleaning. In the future, the effect of forests on the water cycle will change on a regional to global scale mainly because of three ongoing processes: land-use changes, climatic changes and changes in the deposition of pollutants. Long-term monitoring of headwater catchments will continue to help us understanding such changes. In many cases, however, single disturbances like windstorm, fire or pest outbreaks can have more impact than progressive changes. Especially in this regard, paired-catchment experiments and monitoring will remain a powerful tool to assess the impact of environmental changes at a scale large enough to account for many interactions.

Keywords

  • Peak Discharge
  • Nitrate Leaching
  • Small Catchment
  • Dormant Season
  • Catchment Study

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9834-4_5
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9834-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo J (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386

    CrossRef  Google Scholar 

  • Adams MB, Kochenderfer JN, Edwards PJ (2007) The Fernow watershed acidification study: Ecosystem acidification, nitrogen saturation and base cation leaching. Water Air Soil Pollut Focus 7:267–273

    CAS  CrossRef  Google Scholar 

  • Alewell C, Armbruster M, Bittersohl J, Evans CD, Meesenburg H, Moritz K, Prechtel A (2001) Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany? Hydrol Earth Syst Sci 5:367–378

    CrossRef  Google Scholar 

  • Andréassian V, Parent E, Michel C (2003) A distribution-free test to detect gradual changes in watershed behavior. Water Resour Res 39:1252

    CrossRef  Google Scholar 

  • Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291:1–27

    CrossRef  Google Scholar 

  • Badoux A, Jeisy M, Kienholz H, Luscher P, Weingartner R, Witzig J, Hegg C (2006) Influence of storm damage on the runoff generation in two sub-catchments of the Sperbelgraben. Swiss Emmental. Eur J For Res 125:27– 41

    CrossRef  Google Scholar 

  • Bates CG, Henry AJ (1928) Forest and streamflow experiment at Wagon Wheel Gap, Colorado. Mon Weather Rev Suppl 30:1–79

    Google Scholar 

  • Belgrand E (1853) De l’influence des forêts sur l’écoulement des eaux pluviales. Annu Soc Météorol France 1:176–193

    Google Scholar 

  • Beschta RL, Pyles MR, Skaugset AE, Surfleet CG (2000) Peakflow responses to forest practices in the western cascades of Oregon, USA. J Hydrol 233:102–120

    CrossRef  Google Scholar 

  • Bond BJ, Meinzer FC, Brooks JR (2007) How trees influence the hydrological cycle in forest ecosystems. In: Wood PJ, Hannah DM, Sadler JP (eds) Hydroecology and ecohydrology: past, present and future. Wiley, Chichester, pp 7–35

    Google Scholar 

  • Boring LR, Monk CD, Swank WT (1981) Early regeneration of a clear-cut southern Appalachian forest. Ecology 62:1244–1253

    CAS  CrossRef  Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    CrossRef  Google Scholar 

  • Boussingault J-B (1837) Mémoire sur l’influence des défrichements dans la diminution des cours d’eau. Ann Chim 64:113–141

    Google Scholar 

  • Brown AE, Zhang L, McMahon TA, Western AW, Vertessy RA (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 310:28–61

    CrossRef  Google Scholar 

  • Burch H, Forster F, Schleppi P (1996) Zum Einfluss des Waldes auf die Hydrologie der Flysch-Einzugsgebiete des Alptals. Schweiz Z Forstwes 147:925–938

    Google Scholar 

  • Burger H (1943) Einfluss des Waldes aud den Stand der Gewässer, 3. Mitteilung: Der Wasserhaushalt im Sperbel- und Rappengraben von 1927/28 bis 1941/42. Mitt Schweiz Anst Forstl Versuchswes 23:167–222

    Google Scholar 

  • Burger H (1954) Einfluss des Waldes aud den Stand der Gewässer, 5. Mitteilung: Der Wasserhaushalt im Sperbel- und Rappengraben von 1942/43 bis 1951/52. Mitt Schweiz Anst Forstl Versuchswes 35:179–224

    Google Scholar 

  • Chang M (2002) Forest hydrology. An introduction to water and forests. CRC, Boca Raton, FL, p 474

    Google Scholar 

  • Christophersen N, Robson A, Neal C, Whitehead PC, Vigerust B, Henriksen A (1990) Evidence for long-term deterioration of streamwater chemistry and soil acidification at the Birkenes catchment, southern Norway. J Hydrol 116:63–76

    CAS  CrossRef  Google Scholar 

  • Church MR (1997) Hydrochemistry of forested catchments. Annu Rev Earth Planet Sci 25:23–59

    CAS  CrossRef  Google Scholar 

  • Colman EA (1953) Vegetation and watershed management: an apraisal of vegetation management in relation to water supply, flood control and soil erosion. Ronald Press, New York, p 412

    Google Scholar 

  • Cosandey C (1995) La forêt réduit-elle l’écoulement annuel? Ann Géogr 104:7–25

    CrossRef  Google Scholar 

  • Davis JS (1986) Improving information utilization of data from rivers and streams – the role of seasonal factors and annual periodicity in the variance of biogeochemical parameters. Trends Anal Chem 5:247–251

    CAS  CrossRef  Google Scholar 

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manag 71:153–161

    CrossRef  Google Scholar 

  • Douglass WT, Swank JE (1974) Streamflow greatly reduced by converting deciduous hardwood stands to pine. Science 185:857–859

    PubMed  CrossRef  Google Scholar 

  • Draaijers GPJ, van Ek R, Meijers R (1992) Research on the impact of forest stand structure on atmospheric deposition. Environ Pollut 75:243–249

    PubMed  CAS  CrossRef  Google Scholar 

  • Driscoll CT, Likens GE, Hedin LO, Bormann FH (1989) Changes in the chemistry of surface waters. Environ Sci Technol 23:1028–1028

    CrossRef  Google Scholar 

  • Engler A (1919) Untersuchungen über den Einfluss des Waldes aud den Stand der Gewässer. Mitt Schweiz Zentralanst Forstl Versuchswes 12:1–626

    Google Scholar 

  • FAO (2005) Forests and floods - Drowning in fiction or thriving on facts? RAP Publication 2005/03, FAO, Bangkok. Thailand & CIFOR, Bogor Barat, Indonesia

    Google Scholar 

  • Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DE, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–733

    CrossRef  Google Scholar 

  • Folster J, Bishop K, Kram P, Kvarnas H, Wilander A (2003) series of long-term annual fluxes in the streamwater of nine forest catchments from the Swedish environmental monitoring program (PMK 5). Sci Total Environ 310:113–120

    PubMed  CAS  CrossRef  Google Scholar 

  • Frijns E, Tietema A (2002) Nitrogen cycling following clear-cut harvest of a nitrogen limited Scots pine and a nitrogen saturated Douglas fir stand in the Netherlands. BIOGEOMON – 4th international symposium on ecosystem behaviour, University of Reading, UK, p 69 (abstract)

    Google Scholar 

  • German P (1994) Do forests control run-off? Beitr Hydrol Schweiz 35:105–110

    Google Scholar 

  • Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manag 101:37–55

    CrossRef  Google Scholar 

  • Hagedorn F, Schleppi P, Bucher JB, Flühler H (2001) Retention and leaching of elevated N deposition in a forested ecosystem with Gleysols. Water Air Soil Pollut 129:119–142

    CAS  CrossRef  Google Scholar 

  • Hegg C (2006) Waldwirkung auf Hochwasser. Ber Bayer Landesanst Wald Forstwirtsch 55:29–33

    Google Scholar 

  • Hibbert AR (1967) Forest treatment effects on water yield. In: Sopper WE, Lull HW (eds) Forest hydrology. Pergamon, Oxford, pp 527–543

    Google Scholar 

  • Hibbert AR (1971) Increases in streamflow after converting chaparral to grass. Water Resour Res 7:71–80

    CrossRef  Google Scholar 

  • Hornbeck JW, Adams MB, Corbett ES, Verry ES, Lynch JA (1993) Long-term impacts of forest treatments on water yield: a summary for northeastern USA. J Hydrol 150:323–344

    CrossRef  Google Scholar 

  • Hornbeck JW, Martin CW, Eagar C (1997) Summary of water yield experiments at Hubbard Brook Experimental Forest, New Hampshire. Can J For Res 27:2043–2052

    Google Scholar 

  • Hornung M, Roda F, Langan SJ (eds) (1990) A review of small catchment studies in Western Europe producing hydrochemical budgets. Air Poll Res Rep 28, Commission of the European Communities, Bruxelles, 186 pp

    Google Scholar 

  • Hudson JA, Crane SB, Robinson M (1997) The impact of the growth of new plantation forestry on evaporation and streamflow in the Llanbrynmair catchments. Hydrol Earth Sys Sci 1:463–475

    CrossRef  Google Scholar 

  • Ice GG, Neary DG, Adams PW (2004) Effects of wildfire on soils and watershed processes. J For 102(6):16–20

    Google Scholar 

  • Jeandel F, Cantégril JB, Bellaud L (1862) Etudes expérimentales sur les inondations. Bureau des Annales Forestières, Paris, p 144

    Google Scholar 

  • Jenkins A, Peters NE, Rodhe A (1994) Hydrology. In: Moldan B, Černý J (eds) Biogeochemistry of small catchments: a tool for environmental research. Wiley, New York, pp 31–54

    Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389

    CrossRef  Google Scholar 

  • Johnson R (1998) The forest cycle and low river flows: a review of UK and international studies. For Ecol Manag 109:1–7

    CrossRef  Google Scholar 

  • Keller HM (1985) Die hydrologische Forschung an der EAFV seit 1889. Mitt Eidgenöss Forsch Anst Wald Schnee Landsch 61:746–756

    Google Scholar 

  • Keller HM (1988) European experiences in long-term forest hydrology research. In: Swank WT, Crossley DA Jr (eds) Forest hydrology and ecology at Coweeta. Springer, New York, pp 407–414

    CrossRef  Google Scholar 

  • Knoepp JD, Vose JM, Swank WT (2008) Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests. Int J Environ Stud 65:389–408

    CAS  CrossRef  Google Scholar 

  • Küchli C, Meylan B (2002) Wälder liefern das beste Trinkwasser. Wald Holz 10:52–54

    Google Scholar 

  • Hamilton LS (1985) Overcoming myths about soil and water impacts of tropical forest land uses. In: El-Swaify SA, Moldenhauer WC, Lo A (eds) Soil erosion and conservation. Soil Conservation Society of America, Ankeny, IA, pp 680–690

    Google Scholar 

  • LaMalfa EM, Ryle R (2008) Differential snowpack accumulation and water dynamics in aspen and conifer communities: implications for water yield and ecosystem function. Ecosystems 11:569–581

    CrossRef  Google Scholar 

  • Lange B, Lüscher P, Germann PF (2009) Significance of tree roots for preferential infiltration in stagnic soils. Hydrol Earth Syst Sci 13:1809–1821

    CrossRef  Google Scholar 

  • Lamontagne S, Carignan R, D’Arcy P, Prairie YT, Paré D (2000) Element export in runoff from eastern Canadian Boreal Shield drainage basins following forest harvesting and wildfires. Can J Fish Aquat Sci 57(suppl 2):118–128

    CAS  CrossRef  Google Scholar 

  • Landsberg JD, Tiedemann AJ (2000) Fire management. In: Dissmeyer GE (ed) Drinking water from forests and grasslands – a synthesis of the scientific literature. Gen Tech Rep 39. USDA Southern Research Station, Asheville, NC, pp 124–138

    Google Scholar 

  • Langford KJ (1976) Change in yield of water following a bushfire in a forest of Eucalyptus regnans. J Hydrol 29:87–114

    CrossRef  Google Scholar 

  • Laudon H, Norton SA (2010) Drivers and evolution of episodic acidification at the Bear Brook Watershed in Maine, USA. Environ Monit Assess, DOI 10.1007/s10661-010-1526-0

    Google Scholar 

  • Lavabre J, Sempere Torres D, Cernesson F (1993) Changes in the hydrological response of a small Mediterranean basin a year after a wildfire. J Hydrol 142:273–299

    CrossRef  Google Scholar 

  • Lelong F, Dupraz C, Durand P, Didon-Lescot JF (1990) Effects of vegetation type on the biogeochemistry of small catchments (Mont Lozere, France). J Hydrol 116:125–145

    CAS  CrossRef  Google Scholar 

  • Leuppi E, Forster F (1990) Zur Frage der Wirksamkeit des Waldes für den Hochwasserschutz – ein Beispiel aus dem oberen Reusstal. Schweiz Z Forstwes 141:943–954

    Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer, New York, p 159

    CrossRef  Google Scholar 

  • Lindenmayer DB, Likens GE (2009) Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol Evol 24:482–486

    PubMed  CrossRef  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23–47

    CrossRef  Google Scholar 

  • López-Moreno J, Stähli M (2008) Statistical analysis of the snow cover variability in a subalpine watershed: assessing the role of topography and forest interactions. J Hydrol 348:379–394

    CrossRef  Google Scholar 

  • Lovett GM, Reiners WA (1986) Canopy structure and cloud water deposition in subalpine coniferous forests. Tellus 38B:319–327

    CAS  CrossRef  Google Scholar 

  • Lynch JA, Corbett ES (1990) Evaluation of best management practices for controlling nonpoint pollution from silvicultural operations. J Am Water Resour Assoc 26:41–52

    CAS  CrossRef  Google Scholar 

  • Mariotté E (1674) L’origine des fontaines. Paris

    Google Scholar 

  • McBride M, Hession WC, Rizzo DM (2008) Riparian reforestation and channel change: a case study of two small tributaries to Sleepers River, northeastern Vermont, USA. Geomorphology 102:445–459

    CrossRef  Google Scholar 

  • McGuinness JL, Harrold LL (1971) Reforestation influences on small watershed streamflow. Water Resour Res 7:845–852

    CrossRef  Google Scholar 

  • Mitchell MJ, Driscoll CT, Likens KJS, GE MPS, Pardo LH (1996) Climatic control of nitrate loss from forested watersheds in the northeast United States. Environ Sci Technol 30:2609–2612

    CAS  CrossRef  Google Scholar 

  • Moldan B, Černý J (1994) Small catchment research. In: Moldan B, Černý J (eds) Biogeochemistry of small catchments: a tool for environmental research. Wiley, New York, pp 1–29

    Google Scholar 

  • Moldan F, Kjønaas OJ, Stuanes AO, Wright RF (2006) Increased nitrogen in runoff and soil following 13 years of experimentally increased nitrogen deposition to a coniferous-forested catchment at Gårdsjön, Sweden. Environ Pollut 144:610–620

    PubMed  CAS  CrossRef  Google Scholar 

  • Molchanov AA (1963) Gidrologicheskaya Rol’lesa. Academy of Science USSR, Moscow, p 488, Russian

    Google Scholar 

  • Morier I, Schleppi P, Saurer M, Providoli I, Guenat C (2010) Retention and hydrolysable fraction of atmospherically deposited nitrogen in two contrasting forest soils in Switzerland. Eur J Soil Sci 61:197–206

    CAS  CrossRef  Google Scholar 

  • Mundy SC, Nathan RJ, Daamen CC, Cornish PM (2001) Development and application of a model to assess the impact of practical plantation forestry on water yields, MODSIM, vol 1: Natural Systems (Part One). Australian National University, Canberra, pp 449–454

    Google Scholar 

  • Musselman KN, Molotch NP, Brooks PD (2008) Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrol Proc 22:2767–2776

    CrossRef  Google Scholar 

  • Neal C, Fisher R, Smith CJ, Hill S, Neal M, Conway T, Ryland GP, Jeffrey HA (1992) The effects of tree harvesting on stream-water quality at an acidic and acid-sensitive spruce forested area: Plynlimon, mid-Wales. J Hydrol 135:305–319

    CAS  CrossRef  Google Scholar 

  • Neal C (1997) A view of water quality from the Plynlimon watershed. Hydrol Earth Sys Sci 1:743–753

    CrossRef  Google Scholar 

  • Neal C, Wilkinson J, Neal M, Harrow M, Wickham H, Hill L, Morfitt C (1997) The hydrochemistry of the headwaters of the River Severn, Plynlimon. Hydrol Earth Syst Sci 1:583–617

    CrossRef  Google Scholar 

  • Norton SA, Fernandez IJ, Kahl JS, Reinhardt RL (2004) Acidification trends and the evolution of neutralization mechanisms through time at the Bear Brook Watershed in Maine (BBWM), U.S.A. Water Air Soil Pollut Focus 4:289–310

    CAS  Google Scholar 

  • Omernik JM (1977) Nonpoint source – stream nutrient level relationships: a nationwide study. EPA Ecol Res Ser EPA-600/3-77-105, U.S. Environ Prot Agency, Corvallis, 151 pp

    Google Scholar 

  • Piégay H, Walling DE, Landon N, He Q, Liébault F, Petiot R (2004) Contemporary changes in sediment yield in an alpine mountain basin due to afforestation (the upper Drôme in France). Catena 55:183–212

    CrossRef  Google Scholar 

  • Plinius Secundus G (first century AD) Naturalis historia, liber XXXI, caput XXX

    Google Scholar 

  • Prechtel A, Alewell C, Armbruster M, Bittersohl J, Cullen JM, Evans CD, Helliwell R, Kopacek J, Marchetto A, Matzner E, Meesenburg H, Moldan F, Moritz K, Veselý J, Wright RF (2001) Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrol Earth Syst Sci 5:311–325

    CrossRef  Google Scholar 

  • Probst A, Dambrine E, Viville D, Fritz B (1990) Influence of acid atmospheric inputs on surface-water chemistry and mineral fluxes in a declining spruce stand within a small granitic catchment (Vosges massif, France). J Hydrol 116:101–124

    CAS  CrossRef  Google Scholar 

  • Rauch FA (ed) (1821) Annales Européennes de Physique Végétale et dÉconomie Publique, Vol. 2. Eberhart, Paris, 491 pp

    Google Scholar 

  • Robinson M, Gannon B, Schuch M (1991) A comparison of the hydrology of moorland under natural conditions, agricultural use and forestry. Hydrol Sci J 36:565–577

    CrossRef  Google Scholar 

  • Rothe A, Huber C, Kreutzer K, Weis W (2002) Deposition and soil leaching in stands of Norway spruce and European Beech: results from the Höglwald research in comparison with other European case studies. Plant Soil 240:33–45

    CAS  CrossRef  Google Scholar 

  • Rougier de la Bergerie F (1800) Mémoire et observations sur les abus de défrichements et la destruction des bois et forêts. Fournier, Auxerre, 76 pp

    Google Scholar 

  • Rutter N, Essery R, Pomeroy J, Altimir N, Andreadis K, Baker I, Barr A, Bartlett P, Boone A,Deng H,Douville H, Dutra E, Elder K, Ellis C, Feng X, Gelfan A, Goodbody A, Gusev Y,Gustafsson D,Hellström R, Hirabayashi Y, Hirota T, Jonas T, Koren V, Kuragina A,Lettenmaier D, Li W-P, Luce C, Martin E, Nasonova O, Pumpanen J, Pyles RD, Samuelsson P, Sandells M, Schädler G, Shmakin A, Smirnova TG, Stähli M, Stöckli R, Strasser U, Su H Suzuki K, Takata K, Tanaka K, Thompson E, Vesala T, Viterbo P, Wiltshire A, Xia K, Xue Y, Yamazaki T (2009) Evaluation of forest snow processes models (SnowMIP2). J Geophys Res 114:D06111

    CrossRef  Google Scholar 

  • Ryan MG, Binkley D, Fownes JG (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    CrossRef  Google Scholar 

  • Sahin V, Hall MJ (1996) The effects of afforestation and deforestation on water yields. J Hydrol 178:293–309

    CrossRef  Google Scholar 

  • Sanford SE, Creed IF, Tague CL, Beall FD, Buttle JM (2007) Scale-dependence of natural variability of flow regimes in a forested landscape. Water Resour Res 43:W08411

    CrossRef  Google Scholar 

  • Schleppi P, Hagedorn F, Providoli I (2004) Nitrate leaching from a mountain forest ecosystem with Gleysols subjected to experimentally increased N deposition. Water Air Soil Pollut Focus 4:453–467

    CAS  CrossRef  Google Scholar 

  • Schleppi P, Muller N, Feyen H, Papritz A, Bucher JB, Flühler H (1998) Nitrogen budgets of two small experimental forested catchments at Alptal, Switzerland. For Ecol Manag 101:177–185

    CrossRef  Google Scholar 

  • Schleppi P, Waldner PA, Fritschi B (2006a) Accuracy and precision of different sampling strategies and flux integration methods for runoff water: comparisons based on measurements of the electrical conductivity. Hydrol Proc 20:395–410

    CrossRef  Google Scholar 

  • Schleppi P, Waldner P, Hegg C (2003) Einfluss des Waldes auf Nitrat-Gehalte im Wasser. Bündner Wald 56(4):27–30

    Google Scholar 

  • Schleppi P, Waldner PA, Stähli M (2006b) Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling. J Hydrol 319:266–281

    CrossRef  Google Scholar 

  • Schwarze R, Beudert B (2009) Analyse der Hochwassergenese und des Wasserhaushalts eines bewaldeten Einzugsgebiets unter dem Einfluss eines massiven Borkenkäferbefalls. Hydrol Wasserbewirtsch 53:236–249

    CAS  Google Scholar 

  • Serengil Y, Gökbulak F, Özhan S, Hizal A, Şengönül K (2007) Alteration of stream nutrient discharge with increased sedimentation due to thinning of a deciduous forest in Istanbul. For Ecol Manag 246:264–272

    CrossRef  Google Scholar 

  • Shanley JB, Krám P, Hruška J, Bullen TD (2004) A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition. Water Air Soil Pollut Focus 4:325–342

    CAS  CrossRef  Google Scholar 

  • Sørensen R, Ring E, Meili M, Högbom L, Seibert J, Grabs T, Laudon H, Bishop K (2009) Forest harvest increases runoff most during low flows in two boreal streams. Ambio 38:357–363

    PubMed  CrossRef  Google Scholar 

  • Soulsby C, Turnbull D, Hirst D, Langan SJ, Owen R (1997) Reversibility of stream acidification in the Cairngorm region of Scotland. J Hydrol 195:291–311

    CAS  CrossRef  Google Scholar 

  • Stadler D, Wunderli H, Auckenthaler A, Flühler H (1996) Measurement of frost-induced snowmelt runoff in a forest soil. Hydrol Proc 10:1293–1304

    CrossRef  Google Scholar 

  • Stähli M, Jonas T, Gustafsson D (2009) The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrol Proc 23:2498–2512

    CrossRef  Google Scholar 

  • Stednick JD (1996) Monitoring the effects of timber harvest on annual water yield. J Hydrol 176:79–95

    CrossRef  Google Scholar 

  • Stednick JD (2000) Timber Management. In: Dissmeyer GE (ed) Drinking water from forests and grasslands - A synthesis of the scientific literature. USDA Forest Service, General Technical Report SRS-39, pp 103–119

    Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs, vol 237, Advances in Chemical Series. American Chemical Society, Washington, pp 223–284

    CrossRef  Google Scholar 

  • Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith DT, Murdoch PS, Patrick S, Rebsdorf A, Skjelkvåle BL, Stainton MP, Traaen T, Van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    CAS  CrossRef  Google Scholar 

  • Stuanes AO, de Wit HA, Hole LR, Kaste O, Mulder J, Riise G, Wright RF (2008) Effect of climate change on flux of N and C: air-land-freshwater-marine links: synthesis. Ambio 37:2–8

    PubMed  CAS  CrossRef  Google Scholar 

  • Sucker C, Puhlmann H, Zirlewagen B, von Wilpert K, Feger K-H (2009) Hydrol Wasserbewirtsch 53:250–262

    CAS  Google Scholar 

  • Sucker C, von Wilpert K, Puhlmann H (2010) Water quality in forested catchments: trends in stream acidification. Environ Monit Assess (accepted for publication)

    Google Scholar 

  • Swank WT, Johnson CE (1994) Small catchment research in the evaluation and development of forest management practices. In: Moldan B, Černý J (eds) Biogeochemistry of small catchments: a tool for environmental research. Wiley, New York, pp 383–408

    Google Scholar 

  • Swank WT, Swift LW, Douglass JE (1988) Streamflow changes associated with forest cutting, species conversions, and natural disturbances. In: Swank WT, Crossley DA (eds) Forest Hydrology and Ecology at Coweeta. Ecol Stud 66:297–312

    Google Scholar 

  • Swank WT, Vose JM (1997) Long-term nitrogen dynamics of Coweeta forested watersheds in the southeastern United States of America. Global Biogeochem Cycles 11:657–671

    CAS  CrossRef  Google Scholar 

  • Swank WT, Waide JB, Crossley DA, Todd RL (1981) Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51:297–299

    CrossRef  Google Scholar 

  • Swanson FJ, Scatena FN, Dissmeyer GE, Fenn ME, Verry ES, Lynch JA (2000) Watershed processes – fluxes of water, dissolved constituents and sediments. In: Dissmeyer GE (ed) Drinking water from forests and grasslands – a synthesis of the scientific literature. Gen Tech Rep 39. USDA Southern Research Station, Asheville, CA, pp 26–41

    Google Scholar 

  • Thorne JF, Anderson JE, Horiuchi KM (1988) Cation cycling in a base-poor and base-rich Northern hardwood forest ecosystem. J Environ Qual 17:95–101

    CAS  CrossRef  Google Scholar 

  • Tipping E, Bettney R, Hurley MA, Isgren F, James JB, Lawlor AJ, Lofts S, Rigg E, Simon BM, Smith EJ, Woof C (2000) Reversal of acidification in tributaries of the River Duddon (English Lake District) between 1970 and 1998. Environ Pollut 109:183–191

    PubMed  CAS  CrossRef  Google Scholar 

  • Troendle CA, King RM (1985) The effect of timber harvest on the Fool Creek watershed, 30 years later. Water Resour Res 21:1915–1922

    CrossRef  Google Scholar 

  • Udawatta RP, Krstansky JJ, Henderson GS, Garrett HE (2002) Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J Environ Qual 31:1214–1225

    PubMed  CAS  CrossRef  Google Scholar 

  • Van Breemen N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307:599–604

    CrossRef  Google Scholar 

  • Van Breemen N, Jenkins A, Wright RF, Beerling DJ, Arp WJ, Berendse F, Beier C, Collins R, van Dam D, Rasmussen L, Verburg PSJ, Wills MA (1998) Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project). Ecosystems 1:345–351

    CrossRef  Google Scholar 

  • Van Breemen N, Wright RF (2004) History and prospect of catchment biogeochemistry:a European perspective based on acid rain. Ecology 85:2263–2268

    Google Scholar 

  • Verry ES (2003) Ground water and small research basins: an historical perspective. Ground Water 41:1005–1007

    CAS  CrossRef  Google Scholar 

  • Veselý J, Majer V, Norton SA (2002) Heterogeneous response of central European streams to decreased acidic atmospheric deposition. Environ Pollut 120:275–281

    CrossRef  Google Scholar 

  • Wenger W (2002) Bedeutung des Waldes für die Trinkwassergewinnung. LWF Aktuell 34(11):21–24

    Google Scholar 

  • Whitehead PG, Robinson M (1993) Experimental basin studies – an international and historical perspective of forest impacts. J Hydrol 145:217–230

    CrossRef  Google Scholar 

  • Wright RF, Lotse E, Semb A (1993) RAIN project: results after 8 years of experimentally reduced acid deposition. Can J Fish Aquat Sci 50:258–268

    CrossRef  Google Scholar 

  • Wright RF, Tietema A (1995) Ecosystem response to 9 years of nitrogen addition at Sogndal, Norway. For Ecol Manag 71:133–142

    CrossRef  Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Schleppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schleppi, P. (2010). Forested Water Catchments in a Changing Environment. In: Bredemeier, M., Cohen, S., Godbold, D., Lode, E., Pichler, V., Schleppi, P. (eds) Forest Management and the Water Cycle. Ecological Studies, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9834-4_5

Download citation