Skip to main content

Hydrological Effects on Below Ground Processes in Temperate and Mediterranean Forests

Part of the Ecological Studies book series (ECOLSTUD,volume 212)

Abstract

Soil moisture availabilities in European forest ecosystems are varying within the seasonal cycle. Under climate warming, altered precipitation patterns as well as increased temperatures are predicted to result in more frequent or prolonged summer droughts and more severe floods. This review addresses the impact of soil water deficit or excess on soil processes, mycorrhizal symbionts and woody root systems. While we have collected several lines of evidence for adaptive physiological, anatomical and morphological mechanism of fine roots on a single species level, consequences of those changes on the competitive ability and thus the composition of future European forest are hardly known. Thus, future studies are suggested to address the impacts of altered resource availabilities on competitive abilities above and below ground.

Keywords

  • Fine Root
  • Root Biomass
  • Arbuscular Mycorrhiza
  • Fine Root Biomass
  • Root Surface Area

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9834-4_2
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9834-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

References

  • Addington RN, Donovan LA, Mitchell RJ, Vose JM, Pecot SD, Jack SB, Hacke UG, Sperry JS, Oren R (2006) Adjustments in hydraulic architecture ofPinus palustris maintain similar ­stomatal conductance in xeric and mesic habitats. Plant Cell Environ 29:535–545

    PubMed  CAS  CrossRef  Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessaraki M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 285–314

    CrossRef  Google Scholar 

  • Alder NN, Sperry JS, Pockman WT (1996) Root and stem xylem embolism, stomatal ­conductance, and leaf turgor inAcer grandidentatum populations along a soil moisture gradient. Oecologia 105:293–301

    CrossRef  Google Scholar 

  • Almagro M, López J, Querejeta JI, Martínez-Mena M (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605

    CAS  CrossRef  Google Scholar 

  • Angeles G, Evert RF, Kozlowski TT (1986) Development of lenticels and adventitious roots in floodedUlmus americana seedlings. Can J For Res 16:585–590

    CrossRef  Google Scholar 

  • Aranda I, Gil L, Pardos JA (2004) Osmotic adjustment in two temperate oak species [Quercus pyrenaica Willd. andQuercus petraea (Matt.) Liebl.] of the Iberian Peninsula in response to drought. Invest Agrarian: Sist Recur Forestales 13:339–245

    Google Scholar 

  • Armstrong W, Braendle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43:307–358

    CAS  Google Scholar 

  • Aspelmeier S, Leuschner C (2006) Genotypic variation in drought response of Silver birch (Betula pendula Roth.): leaf and root morphology and carbon partitioning. Trees 20:42–52

    CrossRef  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    CrossRef  Google Scholar 

  • Backes K, Leuschner C (2000) Leaf water relations of competitiveFagus sylvatica andQuercus petraea trees during 4 years differing in soil drought. Can J For Res 30:335–346

    Google Scholar 

  • Badot PM, Lucot E, Bruckert S (1994) Soil-moisture in deep levels is the main source of mid-day water potential variations in oak (Quercus sp.). C R Acad Sci III-Vie 317:341–345

    Google Scholar 

  • Bakker MR, Augusto L, Achat DL (2006) Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286:37–51

    CAS  CrossRef  Google Scholar 

  • Bárdossy A, Caspary HJ (1990) Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42:155–167

    CrossRef  Google Scholar 

  • Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253:35–54

    CAS  CrossRef  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29:260–273

    Google Scholar 

  • Bell TL, Adams MA (2004) Ecophysiology of ectomycorrhizal fungi associated withPinus spp. in low rainfall areas of Western Australia. Plant Ecol 171:35–52

    CrossRef  Google Scholar 

  • Beven KJ, Germann P (1982) Macropores and water-flow in soils. Water Resour Res 18:1311–1325

    CrossRef  Google Scholar 

  • Borken W, Savage K, Davidson EA, Trumbore SE (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biol 12:177–193

    CrossRef  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol 15:808–824

    CrossRef  Google Scholar 

  • Bréda N, Granier A, Barataud F, Moyne C (1995) Soil-water dynamics in an oak stand. 1. ­Soil-moisture, water potentials and water-uptake by roots. Plant Soil 172:17–27

    CrossRef  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311

    CrossRef  Google Scholar 

  • Burgess T, McComb JA, Colquhoun I, Hardy GES (1999) Increased susceptibility ofEucalyptus marginata to stem infection byPhytophthora cinnamomi resulting from root hypoxia. Plant Pathol 48:797–806

    CrossRef  Google Scholar 

  • Burk D (2006) Physiological, anatomical and chemical aspects of the regulation of water uptake by beech, pine and birch roots in two different water-supplying locations (In German). Ph.D. thesis, University of Göttingen, Germany. (http://webdoc.sub.gwdg.de/diss/2006/burk)

  • Burke MK, Chambers J (2003) Root dynamics in bottomland hardwood forests of the southeastern United States coastal plain. Plant Soil 250:141–153

    CAS  CrossRef  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    CrossRef  Google Scholar 

  • Cerdà A, Schnabel S, Ceballos A, Gomez-Amelia D (1998) Soil hydrological response under simulated rainfall in the Dehesa land system (Extremadura, SW Spain) under drought conditions. Earth Surf Proc Land 23:195–209

    CrossRef  Google Scholar 

  • Čermák J, Huzulák J, Penka M (1980) Water potential and sap flow-rate in adult trees with moist and dry soil as used for the assessment of root-system depth. Biol Plantarum 22:34–41

    CrossRef  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  CrossRef  Google Scholar 

  • Chiatante D, Di Iorio A, Sciandra S, Scippa GS, Mazzoleni S (2006) Effect of drought and fire on root development inQuercus pubescens Willd. andFraxinus ornus L. seedlings. Environ Exp Bot 56:190–197

    CrossRef  Google Scholar 

  • Chung HH, Kramer PJ (1975) Absorption of water and32P through suberized and unsuberized roots of Loblolly pine. Can J For Res 5:229–235

    CAS  CrossRef  Google Scholar 

  • Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104

    CAS  CrossRef  Google Scholar 

  • Climent JM, Aranda I, Alonso J, Pardos JA, Gil L (2006) Developmental constraints limit the response of Canary Island pine seedlings to combined shade and drought. For Ecol Manage 231:164–168

    CrossRef  Google Scholar 

  • Cole ES, Mahall BE (2006) A test for hydrotropic behavior by roots of two coastal dune shrubs. New Phytol 172:358–368

    PubMed  CrossRef  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    CAS  CrossRef  Google Scholar 

  • Colin-Belgrand M, Dreyer E, Biron P (1991) Sensitivity of seedlings from different oak species to waterlogging – effects on root-growth and mineral-nutrition. Ann For Sci 48:193–204

    CrossRef  Google Scholar 

  • Coners H, Leuschner C (2002)In situ water absorption by tree fine roots measured in real time using miniature sap-flow gauges. Funct Ecol 16:696–703

    CrossRef  Google Scholar 

  • Coners H, Leuschner C (2005)In situ measurement of fine root water absorption in three ­temperate tree species - Temporal variability and control by soil and atmospheric factors. Basic Appl Ecol 6:395–405

    CrossRef  Google Scholar 

  • Coutts MP (1982) The tolerance of tree roots to waterlogging. V. Growth of woody roots of Sitka spruce and Lodgepole pine in waterlogged soil. New Phytol 90:467–476

    CrossRef  Google Scholar 

  • Czajkowski T, Kuhling M, Bolte A (2005) Impact of the 2003 summer drought on growth of beech sapling natural regeneration (Fagus sylvatica L.) in north-eastern Central Europe. Ger J For Res 176:133–143

    Google Scholar 

  • Dalsgaard L (2007) Above and below ground gaps – the effects of a small canopy opening on ­throughfall, soil moisture and tree transpiration in Suserup Skov, Denmark. Ecol Bull 52:81–102

    Google Scholar 

  • Davies Jr. FT, Svenson SE, Cole JC, Phavaphutanon L, Duray SA, Olalde-Portugal V, Meier CE, Bo SH (1996) Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol 16:985–993

    CrossRef  Google Scholar 

  • Doerr SH, Woods SW, Martin DA, Casimiro M (2009) Natural background’ soil water repellency in conifer forests of the north-western USA: its prediction and relationship to wildfire occurrence. J Hydrol 371:12–21

    CrossRef  Google Scholar 

  • Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R (2004) Native root xylem embolism and stomatal closure in stands of Douglas fir and Ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16

    PubMed  CrossRef  Google Scholar 

  • Domínguez Núñez JA, Salva Serrano J, Rodríguez Barreal JA, Omeñaca González JAS (2006) The influence of mycorrhization withTuber melanosporum in the afforestation of a Mediterranean site withQuercus ilex andQuercus faginea. For Ecol Manage 231:226–233

    CrossRef  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    PubMed  CAS  CrossRef  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    CrossRef  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Hubbert KR (2003) Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249:331–342

    CAS  CrossRef  Google Scholar 

  • Eglin T, Walter C, Nys C, Follain S, Forgeard F, Legout A, Squividant H (2008) Influence of waterlogging on carbon stock variability at hillslope scale in a beech forest (Fougères forest, West France). Ann For Sci 65:202

    CrossRef  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    CrossRef  Google Scholar 

  • Enstone DE, Peterson A, Ma FS (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    CrossRef  CAS  Google Scholar 

  • Ennajeh M, Vadel AM, Khemira H, Ben Mimoun M, Hellali R (2006) Defence mechanisms against water deficit in two olive (Olea europaea L.) cultivars ‘Meski’ and ‘Chemlali’. J Horti Sci Biotech 81:99–104

    Google Scholar 

  • EXCIMAP (2007) Annex 2: Atlas of flood maps - Examples from 19 European countries, USA and Japan. In: Martini F, Loat R (eds) Handbook on good practice for flood mapping in Europe. Netherlands Ministry of Transport, Public Works and Water Management, The Hague, The Netherlands, 197 pp

    Google Scholar 

  • Fan TWM, Higashi RM, Frenkiel TA, Lane AN (1997) Anaerobic nitrate and ammonium ­metabolism in flood-tolerant rice coleoptiles. J Exp Bot 48:1655–1666

    CAS  Google Scholar 

  • Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of ­environmental heterogeneity by plants: ecophysiological processes above- and belowground. Academic, San Diego, CA, pp 305–323

    CrossRef  Google Scholar 

  • Frei C, Scholl R, Fukutome S, Schmidli R, Vidale PL (2006) Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J Geophys Res-Atmo 111

    Google Scholar 

  • Folzer H, Dat JF, Capelli N, Rieffel D, Badot PM (2006) Response of Sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Tree Physiol 26:759–766

    PubMed  CAS  CrossRef  Google Scholar 

  • Fort C, Muller F, Label P, Granier A, Dreyer E (1998) Stomatal conductance, growth and root ­signaling inBetula pendula seedlings subjected to partial soil drying. Tree Physiol 18:769–776

    PubMed  CrossRef  Google Scholar 

  • Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, de Faria SM, Bouvet JM, Sylla SN, Dreyfus B, Bâ AM (2007) Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance inPterocarpus officinalis Jacq. seedlings. Mycorrhiza 17:159–166

    PubMed  CAS  CrossRef  Google Scholar 

  • Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Change 79:79–102

    CAS  CrossRef  Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to ­successional status. Can J For Res 17:829–834

    CrossRef  Google Scholar 

  • Garcia-Sánchez F, Syvertsen JP, Gimeno V, Botia P, Perez-Perez JG (2007) Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol Plant 130:532–542

    CrossRef  CAS  Google Scholar 

  • George E, Marschner H (1996) Nutrient and water uptake by roots of forest trees. Z Pflanzenernährung Bodenkunde 159:11–21

    CAS  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11

    CrossRef  Google Scholar 

  • Glenz C, Schlaepfer R, Iorgulescu I, Kienast F (2006) Flooding tolerance of Central European tree and shrub species. For Ecol Manage 235:1–13

    CrossRef  Google Scholar 

  • Göttlein A, Manderscheid B (1998) Spatial heterogeneity and temporal dynamics of soil water tension in a mature Norway spruce stand. Hydrol Proc 12:417–428

    CrossRef  Google Scholar 

  • Goldberg SD, Gebauer G (2009) Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink. Global Change Biol 15:850–860

    CrossRef  Google Scholar 

  • Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117:1683–1699

    CrossRef  Google Scholar 

  • Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of Rocky-Mountain Douglas fir – influence of water and nutrient availability. Ecol Monogr 62:43–65

    CrossRef  Google Scholar 

  • Grier CC, Vogt KA, Keyes MR, Edmonds RL (1981) Biomass distribution and above-ground and below-ground production in young and matureAbies amabilis zone ecosystems of the Washington Cascades. Can J For Res 11:155–167

    CrossRef  Google Scholar 

  • Hacke UG, Sperry J, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41

    CrossRef  Google Scholar 

  • Hampp R, Schaeffer C (1999) Mycorrhiza-carbohydrate and energy metabolism. In: Hock B, Varma A (eds) Mycorrhiza, 2nd edn. Springer, Berlin, Germany, pp 273–303

    CrossRef  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    CAS  CrossRef  Google Scholar 

  • Harrington CA (1987) Responses of Red alder and Black cottonwood seedlings to flooding. Physiol Plant 69:35–48

    CrossRef  Google Scholar 

  • Havens KJ (1997) The effect of vegetation on soil redox within a seasonally flooded forested system. Wetlands 17:237–242

    CrossRef  Google Scholar 

  • Head GC (1973) Shedding of roots. In: Kozlowski TT (ed) Shedding of plant parts. Academic, New York, pp 237–293

    CrossRef  Google Scholar 

  • Hentschel K, Borken W, Matzner E (2007) Leaching losses of inorganic N and DOC following repeated drying and wetting of a spruce forest soil. Plant Soil 300:21–34

    CAS  CrossRef  Google Scholar 

  • Herrera A, Tezara W, Rengifo E, Flores S (2008) Changes with seasonal flooding in sap flow of the tropical flood-tolerant tree species,Campsiandra laurifolia. Trees 22:551–558

    CrossRef  Google Scholar 

  • Hillel D, Baker RS (1988) A descriptive-theory of fingering during infiltration into layered soils. Soil Sci 146:51–56

    CrossRef  Google Scholar 

  • Hook DD, Brown CL, Kormanik PP (1971) Inductive flood tolerance in swamp tupelo (Nyssa sylvatica var.biflora (Walt.) Sarg.). J Exp Bot 22:78–89

    CrossRef  Google Scholar 

  • Hook DD, Brown CL (1973) Root adaptations and relative flood tolerance of five hardwood ­species. For Sci 19:225–229

    Google Scholar 

  • Hook DD, Scholtens JR (1978) Adaptation and flood tolerance of tree species. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science Publication, Ann Arbor, MI, pp 299–331

    Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    PubMed  CAS  CrossRef  Google Scholar 

  • Huang BR, Nobel PS (1993) Hydraulic conductivity and anatomy along lateral roots of cacti: changes with soil water status. New Phytol 123:499–507

    CrossRef  Google Scholar 

  • Huber B (1956) Die Gefäßleitung. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 2. Springer, Berlin, Germany, pp 541–582

    Google Scholar 

  • Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG, Murphy JM, Hassell D, Boorman P, Mcdonald R, Hills S (2002) Climate change scenarios for the United Kingdom: The UKCIP02 Scientific Report. Tyndall Centre for Climate Change Research. School of Environmental Sciences, University of East Anglia, Norwich, UK, 112 pp

    Google Scholar 

  • Hundecha Y, Bárdossy A (2005) Trends in daily precipitation and temperature extremes across western Germany in the second half of the 20th century. Int J Climatol 25:1189–1202

    CrossRef  Google Scholar 

  • Iglesias A, Rosenzweig C, Pereira D (2000) Agricultural impacts of climate change in Spain: developing tools for a spatial analysis. Global Environ Change 10:69–80

    CrossRef  Google Scholar 

  • Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A (2009) Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux. Global Change Biol 15:1289–1301

    CrossRef  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis – 4AR. The Intergovernmental Panel on Climate Change, Geneva, Switzerland

    Google Scholar 

  • Jackson MB, Davies WJ, Else MA (1996) Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann Bot 77:17–24

    CrossRef  Google Scholar 

  • Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR (1999) Ecosystem rooting depth determined with caves and DNA. PNAS 96:11387–11392

    PubMed  CAS  CrossRef  Google Scholar 

  • Jones DL, Murphy DV (2007) Microbial response time to sugar and amino acid additions to soil. Soil Biol Biochem 39:2178–2182

    CAS  CrossRef  Google Scholar 

  • Joslin JD, Wolfe MH, Hanson PJ (2000) Effects of altered water regimes on forest root systems. New Phytol 147:117–129

    CrossRef  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176

    CAS  CrossRef  Google Scholar 

  • Kennedy PG, Peay KG (2007) Different soil moisture conditions change the outcome of the ­ectomycorrhizal symbiosis betweenRhizopogon species andPinus muricata. Plant Soil 291:155–165

    CAS  CrossRef  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: cause and effect? Pedobiologia 49:511–520

    CrossRef  Google Scholar 

  • Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins inMesembryanthemum crystallinum. Plant Physiol 123:111–124

    PubMed  CAS  CrossRef  Google Scholar 

  • Kolb RM, Dolder H, Cortelazzo AL (2004) Effects of anoxia on root ultrastructure of four ­neotropical trees. Protoplasma 224:99–105

    PubMed  CAS  Google Scholar 

  • Konôpka B, Yuste JC, Janssens IA, Ceulemans R (2005) Comparison of fine root dynamics in Scots pine and Pedunculate oak in sandy soil. Plant Soil 276:33–45

    CrossRef  CAS  Google Scholar 

  • Korn S (2004) Experimental investigation of water uptake and hydraulic properties of the root system of six European tree species (In German). Ph.D. thesis, University of Göttingen, Germany (http://webdoc.sub.gwdg.de/diss/2004/korn)

  • Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Parey, Berlin, Germany, 284 pp

    Google Scholar 

  • Kozlowski TT (1984) Response of woody plants to flooding. In: Kozlowski TT (ed) Flooding and plant growth. Academic, Orlando, FL, pp 129–193

    Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego, CA, 657 pp

    Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monogr 1:1–29

    Google Scholar 

  • Kreuzwieser J, Furniss S, Rennenberg H (2002) Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant Cell Environ 25:1039–1049

    CrossRef  Google Scholar 

  • Kreuzwieser J, Papadopoulou E, Rennenberg H (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biol 6:299–306

    PubMed  CAS  CrossRef  Google Scholar 

  • Kung KJS (1990) Preferential flow in a sandy vadose zone 2 – mechanisms and implications. Geoderma 46:59–71

    CrossRef  Google Scholar 

  • Kunstmann H, Schneider K, Forkel R, Knoche R (2004) Impact analysis of climate change for an Alpine catchment using high resolution dynamic downscaling of ECHAM4 time slices. Hydrol Earth Syst Sci 8:1030–1044

    CrossRef  Google Scholar 

  • Lange B, Luescher P, Germann PF (2009) Significance of tree roots for preferential infiltration in stagnic soils. Hydrol Earth Syst Sci 13:1809–1821

    CrossRef  Google Scholar 

  • Langer U, Rinklebe J (2009) Lipid biomarkers for assessment of microbial communities in ­floodplain soils of the Elbe River (Germany). Wetlands 29:353–362

    CrossRef  Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pflanzen, 6th edn. Ulmer, Stuttgart, Germany, 408 pp

    Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and ­agroecosystem functioning. Can J Bot 82:1016–1045

    CrossRef  Google Scholar 

  • Lehnardt F, Brechtel HM (1980) Durchwurzelungs- und Schöpftiefen von Waldbeständen verschiedener Baumarten und Altersklassen bei unterschiedlichen Bodenbedingungen. AFZ 151:120–127

    Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitiveFagus sylvatica L. andQuercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149:33–46

    CrossRef  Google Scholar 

  • Leuschner C, Coners H, Icke R, Hartmann K, Effinger ND, Schreiber L (2003) Chemical ­composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots. Ann For Sci 60:763–772

    CAS  CrossRef  Google Scholar 

  • Leuschner C, Coners H, Icke R (2004a) In situ measurement of water absorption by fine roots of three temperate trees: species differences and differential activity of superficial and deep roots. Tree Physiol 24:1359–1367

    PubMed  CrossRef  Google Scholar 

  • Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004b) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56

    CAS  CrossRef  Google Scholar 

  • Liebersbach H, Steingrobe B, Claasen N (2004) Roots regulates ion transport in the rhizosphere to counteract reduced mobility in dry soil. Plant Soil 260:79–88

    CAS  CrossRef  Google Scholar 

  • Lindenmair J, Matzner E, Zimmermann R (2004) The role of woody roots in water uptake of mature spruce, beech and oak trees. In: Matzner E (ed) Biogeochemistry of forest catchments in a changing environment. Springer, Berlin, Germany, pp 279–289

    Google Scholar 

  • Lloret F, Peñuelas J, Estiarte M (2004) Experimental evidence of reduced diversity of seedlings due to climate modification in a Meditarranean-type community. Global Change Biol 10:248–258

    CrossRef  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    CrossRef  Google Scholar 

  • Lovisolo C, Schubert A (2006) Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach. New Phytol 172:469–478

    PubMed  CAS  CrossRef  Google Scholar 

  • Lovisolo C, Secchi F, Nardini A, Salleo S, Buffa R, Schubert A (2007) Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiol Plant 130:543–551

    CAS  CrossRef  Google Scholar 

  • Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonisation of root systems of threePopulus species grown under elevated CO2 (POPFACE). Global Change Biol 9:838–848

    CrossRef  Google Scholar 

  • MacFall JS, Johnson GA, Kramer PJ (1990) Observation of a water-depletion region surrounding Loblolly pine roots by magnetic-resonance-imaging. PNAS 87:1203–1207

    PubMed  CAS  CrossRef  Google Scholar 

  • MacFall JS, Johnson GA, Kramer PJ (1991) Comparative water-uptake by roots of different ages in seedlings of Loblolly pine (Pinus taeda L.). New Phytol 119:551–560

    CrossRef  Google Scholar 

  • Machado JL, Tyree MT (1994) Patterns of hydraulic architecture and water relations of two ­tropical canopy trees with contrasting leaf phenologies:Ochroma pyramidale andPseudobombax septenatum. Tree Physiol 14:219–240

    PubMed  CrossRef  Google Scholar 

  • Mainiero R, Kazda M (2006) Depth-related fine root dynamics ofFagus sylvatica during ­exceptional drought. For Ecol Manage 237:135–142

    CrossRef  Google Scholar 

  • Marschner H (1997) Mineral nutrition of higher plants, 2nd edn. Academic, London, UK, 889 pp

    Google Scholar 

  • Manes F, Vitale M, Donato E, Giannini M, Puppi G (2006) Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetica 44:387–393

    CrossRef  Google Scholar 

  • Meier IC, Leuschner C (2008a) Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiol 28:297–309

    PubMed  CrossRef  Google Scholar 

  • Meier IC, Leuschner C (2008b) The belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biol 14:2081–2095

    CrossRef  Google Scholar 

  • Meinzer FC, Fownes JH, Harrington RA (1996) Growth indices and stomatal control of ­transpiration inAcacia koa stands planted at different densities. Tree Physiol 16:607–615

    PubMed  CrossRef  Google Scholar 

  • Muhr J, Goldberg SD, Borken W, Gebauer G (2008) Repeated drying-rewetting cycles and their effects on the emission of CO2, N2O, NO, and CH4 in a forest soil. J Soil Sci Plant Nutr 171:719–728

    CAS  CrossRef  Google Scholar 

  • Nardini A, Pitt F (1999) Drought resistance ofQuercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. New Phytol 143:485–493

    CrossRef  Google Scholar 

  • Nardini A, Salleo S, Tyree MT, Vertovec M (2000) Influence of the ectomycorrhizas formed byTuber melanosporum Vitt. on hydraulic conductance and water relations ofQuercus ilex L. seedlings. Ann For Sci 57:305–312

    CrossRef  Google Scholar 

  • Neatrour MA, Jones RH, Golladay SW (2007) Response of three floodplain tree species to spatial heterogeneity in soil oxygen and nutrients. J Ecol 95:1274–1283

    CAS  CrossRef  Google Scholar 

  • Nicoll BC, Coutts MP (1998) Timing of root dormancy and tolerance to root waterlogging in clonal Sitka spruce. Trees 12:241–245

    CrossRef  Google Scholar 

  • Nisbet NR (2002) Implications of climate change: soil and water. In: Broadmeadow M (ed) Climate change: impacts on UK forests. Forestry Commission, Edinburgh, UK, pp 53–67

    Google Scholar 

  • Ostonen I (2003) Fine root structure, dynamics and proportion in net primary production of Norway spruce forest ecosystems in relation to site condition. Dissertationes Biologicae Universitatis Tartuensis 84, Tartu University Press

    Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    CrossRef  Google Scholar 

  • Osunubi O, Davies WJ (1981) Root growth and water relations of oak and birch seedlings. Oecologia 51:343–350

    CrossRef  Google Scholar 

  • Parker MM, Van Lear DH (1996) Soil heterogeneity and root distribution of mature Loblolly pine stands in Piedmont soils. SSSAJ 60:1920–1925

    CAS  CrossRef  Google Scholar 

  • Pärtel M, Helm A (2007) Invasion of woody species into temperate grasslands: relationship with abiotic and biotic soil resource heterogeneity. J Veg Sci 18:63–70

    CrossRef  Google Scholar 

  • Pate JS, Jeschke WD, Aylward MJ (1995) Hydraulic architecture and xylem structure of the dimorphic root systems of South-West Australian species of Proteaceae. J Exp Bot 46:907–915

    CAS  CrossRef  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, London, UK, 340 pp

    Google Scholar 

  • Pereira JS, David JS, David TS, Caldeira MC, Chaves MM (2004) Carbon and water fluxes in Mediterranean-type ecosystems – constraints and adaptations. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany 65. Springer, Berlin, Germany, pp 468–495

    Google Scholar 

  • Pereira JS, Chaves MM, Caldeira MC, Correia A (2006) Water availability and productivity. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell, Oxford, UK, pp 118–145

    CrossRef  Google Scholar 

  • Pérez-Ramos IM, Marañón T (2009) Effects of waterlogging on seed germination of three Mediterranean oak species: ecological implications. Int J Ecol 35:422–428

    Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885

    CrossRef  Google Scholar 

  • Pickard WF (1989) How might a tracheary element which is embolized by day be healed by night. J Theor Biol 141:259–279

    CrossRef  Google Scholar 

  • Pietikäinen J, Vaijärvi E, Ilvesniemi H, Fritze H, Westman CJ (1999) Carbon storage of microbes and roots and the flux of CO2 across a moisture gradient. Can J For Res 29:1197–1203

    CrossRef  Google Scholar 

  • Pigott CD, Pigott S (1993) Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. J Ecol 81:557–566

    CrossRef  Google Scholar 

  • Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, Décamps H (2000) Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50:163–182

    CrossRef  Google Scholar 

  • Polomski J, Kuhn N (1998) Wurzelsysteme. Haupt, Bern, Switzerland, 290 pp

    Google Scholar 

  • Pronk AA, De Willigen P, Heuvelink E, Challa H (2002) Development of fine and coarse roots ofThuja occidentalis ‘Brabant’ in non-irrigated and drip irrigated field plots. Plant Soil 243:161–171

    CAS  CrossRef  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    PubMed  CAS  CrossRef  Google Scholar 

  • Ray AM, Inouye RS (2006) Effects of water-level fluctuations on the arbuscular mycorrhizal ­colonization ofTypha latifolia L. Aquat Bot 84:210–216

    CrossRef  Google Scholar 

  • Ray D, Nicoll BC (1998) The effect of soil water-table depth on root-plate development and ­stability of Sitka spruce. Forestry 71:169–182

    CrossRef  Google Scholar 

  • Raynaud X, Leadley PW (2004) Soil characteristics play a key role in modelling nutrient ­competition in plant communities. Ecology 85:2200–2214

    CrossRef  Google Scholar 

  • Reece CF, Riha SJ (1991) Role of root systems of Eastern larch and White spruce in response to flooding. Plant Cell Environ 14:229–234

    CrossRef  Google Scholar 

  • Rewald B (2008) Impact of climate change-induced drought on tree root hydraulic properties and competition belowground. Ph.D. thesis, University of Göttingen, Germany (http://webdoc.sub.gwdg.de/diss/2008/rewald)

  • Rewald B, Leuschner C (2009a) Belowground competition in a broad-leaved temperate mixed forest – pattern analysis and experiments in a four species stand. Eur J Forest Res 128:387–398

    CrossRef  Google Scholar 

  • Rewald B, Leuschner C (2009b) Does root competition asymmetry increase with water ­availability? Plant Ecol Div 2:255–264

    CrossRef  Google Scholar 

  • Rewald B, Ephrath JE, Rachmilevitch S (2010) A root is a root is a root? - Water uptake rates ofCitrus root orders. Plant Cell Environ DOI: 10.1111/j.1365-3040.2010.02223.x

    Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift – substantial nocturnal water transport between soil layers byArtemisia tridentata roots. Oecologia 73:486–489

    CrossRef  Google Scholar 

  • Richardson MJ, Vepraskas JL (2000) Wetlands soils: genesis, hydrology, landscapes and ­classification. CRC Press, Boca Raton, FL

    Google Scholar 

  • Rieger M, Litvin P (1999) Root system hydraulic conductivity in species with contrasting root anatomy. J Exp Bot 50:201–209

    CAS  Google Scholar 

  • Rowell DP (2005) A scenario of European climate change for the late twenty-first century: ­seasonal means and interannual variability. Clim Dyn 25:837–849

    CrossRef  Google Scholar 

  • Ryel RJ (2004) Hydraulic redistribution. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany 65. Springer, Berlin, Germany, pp 413–435

    CrossRef  Google Scholar 

  • Sardans J, Peñuelas J, Ogaya R (2008) Drought-induced changes in C and N stoichiometry in aQuercus ilex Mediterranean forest. For Sci 54:513–522

    Google Scholar 

  • Schäffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    PubMed  CrossRef  Google Scholar 

  • Schleppi P, Hagedorn F, Providoli I (2004) Nitrate leaching from a mountain forest ecosystem with Gleysols subjected to experimentally increased N deposition. Water Air Soil Pollut Focus 4:453–467

    CAS  CrossRef  Google Scholar 

  • Schreiber L, Franke R, Hartmann KD, Ranathunge K, Steudle E (2005) The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J Exp Bot 56:1427–1436

    PubMed  CAS  CrossRef  Google Scholar 

  • Schmull M, Thomas FM (2000) Morphological and physiological reactions of young deciduous trees (Quercus robur L.,Q. petraea [Matt.] Liebl.,Fagus sylvatica L.) to waterlogging. Plant Soil 225:227–242

    CAS  CrossRef  Google Scholar 

  • Schulze ED, Caldwell MM, Canadell J, Mooney HA, Jackson RB, Parson D, Scholes R, Sala OE, Trimborn P (1998) Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands. Oecologia 115:460–462

    CrossRef  Google Scholar 

  • Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert A (2007) Isolation and functional ­characterization of three aquaporins from olive (Olea europaea L.). Planta 225:381–392

    PubMed  CAS  CrossRef  Google Scholar 

  • Shani U, Waisel Y, Eshel A, Xue S, Ziv G (1993) Responses to salinity of grapevine plants with split root systems. New Phytol 124:695–701

    CAS  CrossRef  Google Scholar 

  • Shi LB, Guttenberger M, Kottke I, Hampp R (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12:303–311

    PubMed  CAS  CrossRef  Google Scholar 

  • Silberbush M, Barber SA (1983) Sensitivity analysis of parameters used in simulating K uptake with a mechanistic mathematical model. Agron J 75:851–854

    CAS  CrossRef  Google Scholar 

  • Silvan N, Regina K, Kitunen V, Vasander H, Laine J (2002) Gaseous nitrogen loss from a restored peatland buffer zone. Soil Biol Biochem 34:721–728

    CAS  CrossRef  Google Scholar 

  • Smit BA, Stachowiak M (1988) Effects of hypoxia and elevated carbon-dioxide concentration on water flux throughPopulus roots. Tree Physiol 4:153–165

    PubMed  CrossRef  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London, UK, 787 pp

    Google Scholar 

  • Sperry JS, Saliendra NZ (1994) Intra- and inter-plant variation in xylem cavitation inBetula ­occidentalis. Plant Cell Environ 17:1233–1241

    CrossRef  Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas fir and White fir. Tree Physiol 17:275–280

    PubMed  CrossRef  Google Scholar 

  • Staelens JA, De Schrijver A, Verheyen K, Verhoest NEC (2006) Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. J Hydrol 330:651–662

    CrossRef  Google Scholar 

  • Stenström E (1991) The effects of flooding on the formation of ectomycorrhizae inPinus ­sylvestris seedlings. Plant Soil 131:247–250

    CrossRef  Google Scholar 

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Nat 135:649–669

    CrossRef  Google Scholar 

  • Steudle E (1994) Water transport across roots. Plant Soil 167:79–90

    CAS  CrossRef  Google Scholar 

  • Steudle E, Heydt H (1997) Water transport across tree roots. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees – contributions to modern tree physiology. Backhuys, Leiden, The Netherlands, pp 239–255

    Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    PubMed  CAS  CrossRef  Google Scholar 

  • Thomas FM (2000) Growth and water relations of four deciduous tree species (Fagus sylvatica L.,Quercus petraea [Matt.] Liebl.,Q. pubescens Willd.,Sorbus aria [L.]Cr.) occurring at Central-European tree-line sites on shallow calcareous soils: physiological reactions of ­seedlings to severe drought. Flora 195:104–115

    Google Scholar 

  • Topa MA, McLeod KW (1986) Responses ofPinus clausa,Pinus serotina andPinus taeda ­seedlings to anaerobic solution culture. I. Changes in growth and root morphology. Physiol Plant 68:523–531

    CAS  CrossRef  Google Scholar 

  • Trillo N, Fernández R (2005) Wheat plant hydraulic properties under prolonged experimental drought: stronger decline in root-system conductance than in leaf area. Plant Soil 277:277–284

    CAS  CrossRef  Google Scholar 

  • Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by ­nutrient deficiency inPistacia lentiscus (L.). Trees 20:334–339

    CrossRef  Google Scholar 

  • Tsukahara H, Kozlowski TT (1985) Importance of adventitious roots to growth of floodedPlatanus occidentalis seedlings. Plant Soil 88:123–132

    CrossRef  Google Scholar 

  • Unger IM, Kennedy AC, Muzika RM (2009) Flooding effects on soil microbial communities. Appl Soil Ecol 42:1–8

    CrossRef  Google Scholar 

  • Valdéz M, Asbjornsen H, Cárdenas MG, Juârez M, Vogt KA (2006) Drought effects on fine-root and ectomycorrhizal-root biomass in managedPinus oaxacana Mirov. stands in Oaxaca, Mexico. Mycorrhiza 16:117–124

    CrossRef  Google Scholar 

  • Vanninen P, Ylitalo H, Sievanen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10:231–238

    Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329

    PubMed  CAS  CrossRef  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    CAS  CrossRef  Google Scholar 

  • White TCR (2007) Flooded forests: death by drowning, not herbivory. J Veg Sci 18:147–148

    CrossRef  Google Scholar 

  • Xu YJ, Röhrig E, Fölster H (1997) Reaction of root systems of grand fir (Abies grandis Lindl) and Norway spruce (Picea abies Karst.) to seasonal waterlogging. For Ecol Manage 93:9–19

    CrossRef  Google Scholar 

  • Yamada S, Komori T, Myers PN, Kuwata S, Kubo T, Imaseki H (1997) Expression of plasma membrane water channel genes under water stress inNicotiana excelsior. Plant Cell Physiol 38:1226–1231

    PubMed  CAS  CrossRef  Google Scholar 

  • Yu KW, Faulkner SP, Baldwin MJ (2008) Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration. Global Change Biol 14:798–812

    CrossRef  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin, Germany, 143 pp

    Google Scholar 

  • Zimmermann HM, Steudle E (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta 206:7–19

    CAS  CrossRef  Google Scholar 

  • Zwieniecki MA, Holbrook NM (1998) Diurnal variation in xylem hydraulic conductivity in White ash (Fraxinus americana L.), Red maple (Acer rubrum L.) and Red spruce (Picea rubens Sarg.). Plant Cell Environ 21:1173–1180

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rewald, B., Michopoulos, P., Dalsgaard, L., Jones, D.L., Godbold, D.L. (2010). Hydrological Effects on Below Ground Processes in Temperate and Mediterranean Forests. In: Bredemeier, M., Cohen, S., Godbold, D., Lode, E., Pichler, V., Schleppi, P. (eds) Forest Management and the Water Cycle. Ecological Studies, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9834-4_2

Download citation