Skip to main content

Large Scale Approach to Forest and Water Interactions

  • Chapter
  • First Online:
Forest Management and the Water Cycle

Part of the book series: Ecological Studies ((ECOLSTUD,volume 212))

Abstract

Assessing the impacts of forests and forest management on the water cycle and discharge in large scaled watersheds requires innovative methods and modeling because besides forestry the topography, geology, pedology and climate conditions cause a considerable external forcing. Progresses were made to show the spatial-temporal variability of rainfall-runoff behavioral patterns in meso-scaled basins by remote sensing methods and GIS-based approaches. Forest stabilization measures have an essential relevance for the drinking water resources in large scale groundwater appearances since the contamination by atmospheric nitrogen and acid deposition increased. An integrated land and water management at larger scale needs to find the way combining an engineering watershed management and a scientific based precautionary land-use management. A large scale European approach across political borders was laid down by the European Water Framework and Floods Directives to protect and enhance the status of inland surface water, transitional water, coastal water and groundwater and to mitigate the effects of floods and droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen J, Dybkjaer G, Jensen KH, Refsgaard JC, Rasmussen K (2002) Use of remotely sensed precipitation and leaf area index in a distributed hydrological model. J Hydrol 264:34–50

    Article  Google Scholar 

  • Archer D (2003) Scale effects on the hydrological impact of upland afforestation and drainage using indices of flow variability: the River Irthing, England. Hydrol Earth Syst Sci 7:325–338

    Article  Google Scholar 

  • Betson RP (1964) What is watershed runoff? J Geophys Res 69:1541–1552

    Article  Google Scholar 

  • Beven KJ (2000) On uniqueness of place and process representations in hydrological modelling. Hydrol Earth Syst Sci 4:203–212

    Article  Google Scholar 

  • Beven KJ (2001) Rainfall-runoff modelling: the primer. Wiley, Hoboken, NJ

    Google Scholar 

  • Beven KJ (2006) On undermining the science? Hydrol Process 20:3141–3146

    Article  Google Scholar 

  • Beven KJ (2008) On doing better hydrological science. Hydrol Process 22:3549–3553

    Article  Google Scholar 

  • Blöschl G, Zehe E (2005) On hydrological predictability. Hydrol Processes 19:3923–3929

    Article  Google Scholar 

  • Bredemeier M, Schueler G (2004) Forest ecosystem structures, forest management, and water retention. Ecohydrol Hydrobiol 4(3):255–266

    Google Scholar 

  • Buttle JM (1998) Fundamentals of small catchment hydrology. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 1–43

    Chapter  Google Scholar 

  • Calder I (2005) Blue Revolution – Integrated Land and Water Resource Management, 2nd edn. Earthscan, London, Sterling, VA, p 353

    Google Scholar 

  • Calder I, Aylward B (2006) Forest and floods: moving to an evidence-based approach to watershed and integrated flood management. Int Water Resour Assoc (Water Intl) 31(1):1–13

    Google Scholar 

  • Canters F, Swinnen E, Eerens H, Van de Voorde T (2002) Estimation of land-cover proportions at the subpixel level from 1-km SPOT-VGT data. – Proc. of the 5th int. symposium on spatial accuracy assessment in natural resources and environmental sciences. Accuracy 2002:66–74

    Google Scholar 

  • Casper MC, Vohland M (2008) Validation of a large scale hydrological model with data fields retrieved from reflective and thermal optical remote sensing data – A case study for the Upper Rhine Valley. Phys Chem Earth 33:1061–1067

    Article  Google Scholar 

  • Dunne T (1978) Field studies of hillslope flow processes. In: Kirkby MJ (ed) Hillslope Hydrology. Wiley, Chichester, pp 227–293

    Google Scholar 

  • De Fries R, Hansen M, Steininger M, Dubayah R, Sohlberg R, Townshend J (1997) Subpixel forest cover in central Africa from multisensor, multitemporal data. Remote Sens Environ 60:228–246

    Article  Google Scholar 

  • De Jong J (2001) Remote sensing of wet forests. Ph.D. thesis, University of Groningen

    Google Scholar 

  • De Jeu R, Heusinkveld B, Vugts H, Holmes T, Owe M (2004) Remote sensing techniques to measure dew: the detection of canopy water with an L-band passive microwave radiometer and a spectral reflectance sensor. – Remote Sensing for Agriculture, Ecosystems, and Hydrology VI. In: Owe M, D’Urso G, Gouweleeuw BT, Jochum AM (eds) SPIE Proceedings, vol 5568., pp 225–235

    Google Scholar 

  • Dunne T, Black RD (1970) Partial area contributions to storm runoff in a small New England watershed. Water Resour Res 6:1296–1311

    Article  Google Scholar 

  • El Maayar M, Chen JM (2006) Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sens Environ 102:33–51

    Article  Google Scholar 

  • Fenicia F, Savenije H, Avdeeva J (2008) Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land use, or land use management? Hydrology and Earth System Sciences Discussion 5:1787–1819

    Article  Google Scholar 

  • Gerrits AMJ, Savenije HHG, Hoffmann L, Pfister L (2007) New technique to measure forest floor interception – an application in a beech forest in Luxembourg. Hydrol Earth Syst Sci 11:695–701

    Article  Google Scholar 

  • Gimona A, Van der Horst A (2007) Mapping hotspots of multiple landscape functions: a case study on farmland afforestation in Scotland. Landscape Ecol 22:1255–1264

    Article  Google Scholar 

  • Grant GE (2005) The role of forests and forest harvest on floods: myths and realities. Presentation at the XXII IUFRO World Congress, Brisbane, Australia. Int Forest Rev Vol. 7(No. 5):311pp

    Google Scholar 

  • Grant J, Saleh-Contell K, Wigneron J, Guglielmetti M, Kerr Y, Schwank M, Skou N, Van de Griend AA (2008) Calibration of the L-MEB Model Over a Coniferous and a Deciduous Forest. IEEE Trans Geosci Remote Sens 46:808–818

    Article  Google Scholar 

  • Grayson R, Blöschl G (2000) Spatial patterns in catchment hydrology: observations and modelling. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hellebrand H, Hoffmann L, Juilleret J, Pfister L (2007a) Assessing winter storm flow generation by means of permeability of the lithology and hydrological soil processes. Hydrol Earth Syst Sci 11:1673–1682

    Article  Google Scholar 

  • Hellebrand H, Juilleret J, Hoffmann L, Pfister L (2007b) Assessing hydrological information potential of lithology and soil for winter storm flow generation: a two-pronged approach to mesoscale regionalization. In: Schüler G, Gellweiler I, Seeling S (eds) Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnahmen der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen. Mitt. a.d. Forschungsanstalt für Waldökologie und Forstwirtschaft, Nr. 64/07. Trippstadt, pp 143–154

    Google Scholar 

  • Hellebrand H, Müller C, Pfister L (2007c) Up-scaling of soil hydrological processes with respect to distributed rainfall-runoff modelling. In: Proceedings of the 1st scientific conference on integrated catchment management for hazard mitigation, Trier, pp 7–11

    Google Scholar 

  • Hellebrand H, Van den Bos R, Hoffmann L, Juilleret J, Krein A, Pfister L (2008) Spatio-temporal variability of behavioral patterns in hydrology in meso-scale basins of the Rhineland Palatinate (1972–2002). Clim Change. doi:10.1007/s10584-008-9509-7

    Google Scholar 

  • Hewlett JD, Hibbert AR (1967) Factors affecting the response of small watersheds to precipitation in humid areas. In: Sopper WW, Lull HW (eds) Proceedings of the international symposium on forest hydrology. Pergamon, Oxford, pp 275–290

    Google Scholar 

  • Hochschil U (1998) Einsatz der Fernerkundung für die hydrologische Systemanalyse im südlichen Afrika. ZPF-Z Photogrammetrie Fernerkundung 66:98–107

    Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophys Union 14:446–460

    Article  Google Scholar 

  • Hrachowitz M, Soulsby C, Tetzlaff D, Dawson JJC, Dunn SM, Malcolm IA (2009) Using long-term data sets to understand transit times in contrasting headwater catchments. J Hydrol. doi:10.1016/j.jhydrol.2009.01.001

    Google Scholar 

  • Immerzeel WW, Droogers P (2008) Calibration of a distributed hydrological model based on satellite evapotranspiration. J Hydrol 349:411–424

    Article  Google Scholar 

  • Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874

    Article  Google Scholar 

  • La Marche J, Lettenmair DP (2001) Effects of forest roads on flood flows in the Deschutes River, Washington. Earth Surf Process Landforms 26:115–134

    Article  Google Scholar 

  • Lacava T, Greco M, di Leo EV, Martino G, Pergola N, Sannazzaro F, Tramutoli V (2005) Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases. Nat Hazards Earth Syst Sci 5:583–592

    Article  Google Scholar 

  • Landesamt für Wasserwirtschaft (1993) Grundwasserbericht 1992. LfW-Bericht, Nr. 225/93, 87pp

    Google Scholar 

  • Llorens P, Gallart F (2000) A simplified method for forest water storage capacity measurement. J Hydrol 240:131–144

    Article  Google Scholar 

  • Lundberg A, Eriksson M, Halldin S, Kellner E, Seibert J (1997) New approach to the measurement of interception evaporation. J Atmos Oceanic Technol 14:1023–1035

    Article  Google Scholar 

  • Marshall MR, Francis OJ, Frogbrook ZL, Jackson BM, McIntyre NR, Reynolds B, Solloway I, Wheater, HS (2007) The Pontbren catchment study: a multi-scale experimental programme investigating the impact of UK upland land use on flood risk. In: Proceedings of the 1st scientific conference on integrated catchment management for hazard mitigation, Trier, pp 68–72

    Google Scholar 

  • Martinez-Carreras N, Krein A, Iffly JF, Barnich F, Pfister L, Hofmann L, Gallart F (2007) Examining the spatial and temporal variations of erosion processes and hydrochemical response in mesoscale catchments – preliminary results from the Attert basin in Luxembourg. In: Schüler G, Gellweiler I, Seeling S (eds) Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnahmen der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen. Mitt. a.d. Forschungsanstalt für Waldökologie und Forstwirtschaft, Nr. 64/07. Trippstadt, pp 125–134

    Google Scholar 

  • McDonnell JJ (2003) Where does the water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrol Process 17:1869–1875

    Article  Google Scholar 

  • McDonnell JJ, Woods R (2004) Edilonal on the need for catchment classification journal of Hydrology 299(A-2):2-3

    Google Scholar 

  • Nebe W, Abiy M (2002) Chemie von Quellwässern in bewaldeten Einzugsgebieten des Erzgebirges. Forstw Cbl 121:1–14

    Article  CAS  Google Scholar 

  • Nisbet T (2002) Implications of climate change: soil and water. In: Climate change: impacts on UK forests. Edinburgh: Forestry Commission, Edinburgh, chapter 5

    Google Scholar 

  • Pan M, Wood EF, Wójcik R, McCabe MF (2008) Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens Environ 112:1282–1294

    Article  Google Scholar 

  • Penman HL (1963) Vegetation and hydrology. Commonwealth Bureau of Soils, Harpenden, UK, Technical communications 53

    Google Scholar 

  • Pfister L, Humbert J, Iffly JF, Hoffmann L (2002) Use of regionalized stormflow coefficients in view of hydro-climatological hazard mapping. Hydrol Sci J 47:479–491

    Article  Google Scholar 

  • Pfister L, Drogue G, El Idrissi A, Iffly JF, Poirier C, Hoffmann L (2004) Spatial variability of trends in the rainfall-runoff relationship: a mesoscale study in the Mosel basin. Clim Change 66:66–87

    Article  Google Scholar 

  • Pfister L, Savenije HHG (2006) Leonardo da Vinci’s scriptures as benchmark papers in hydrology. Hydrol Process 20:1653–1655

    Article  Google Scholar 

  • Pinder GF, Jones JF (1969) Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resour Res 5:438–445

    Article  CAS  Google Scholar 

  • Robinson M, Dupyrat A (2005) Effects of commercial timber harvesting on streamflow regimes in the Plynlimon catchments, mid-Wales. Hydrol Process 19:1213–1226

    Article  Google Scholar 

  • Rogan J, Chen D (2004) Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog Plann 61:301–325

    Article  Google Scholar 

  • Savenije HHG (2004) The importance of interception and why we should delete the term evapo-transpiration from our vocabulary. Hydrol Process 18:1507–1511

    Article  Google Scholar 

  • Schneider R, Schüler G (2007) Impact of Heavy Forest Machinery on Physical Properties of Forest Soils. Proceedings of the Scientific Conference on Integrated Catchment Management for Hazard Mitigation, Trier, Germany, pp 33–37. http://ubt.opus.hbz-nrw.de/volltexte/2007/438

  • Schüler G (2002) Schutz versauerter Böden in nachhaltig bewirtschafteten Wäldern – Ergebnisse aus 10-jähriger interdisziplinärer Forschung. Allgem Forst- u Jagdztg 173:1–7

    Google Scholar 

  • Schüler G (2006) Identification of flood-generating forest areas and forestry measures for water retention. For Snow Landsc Res 80(1):99–114

    Google Scholar 

  • Schüler G, Gellweiler I, Seeling S (2007) Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnahmen der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen. Mitt. a.d. Forschungsanstalt für Waldökologie und Forstwirtschaft, Nr. 64/07. Trippstadt, 337 pp

    Google Scholar 

  • Seeling S, Ahrends H (2004) Perspektiven der Verwendung multispektraler Fernerkundungsdaten im Rahmen flächen-distributiver Berechnungen der Grundwasserneubildungsrate im Mittelgebirgsraum. Jber Mitt Oberrhein Geol Ver 86:385–403

    Google Scholar 

  • Seibert J, McDonnell JJ (2002) On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resour Res 38(11):1241. doi:111029/2001WR000978

    Article  Google Scholar 

  • Seibert J, McGlynnn BL (2007) A newtrionjular multiple flow direction algorithm for computing upslopeareas from gridded digital elevotion models water Resources Research 43:wouson, doi:1029/2006WR005128

  • Sklash MG, Farvolden RN (1979) The role of groundwater in storm runoff. J Hydrol 43:45–65

    Article  CAS  Google Scholar 

  • Soulsby C, Rodgers Petry J, Hannah DM, Malcolm IA, Dunn SM (2004) Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland. J Hydrol 291:174–196

    Article  CAS  Google Scholar 

  • Soulsby C, Tetzlaff D, Rodgers P, Dunn S, Waldron S (2006) Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation. J Hydrol 325:197–221

    Article  Google Scholar 

  • Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6:85–99

    Article  Google Scholar 

  • Sucker C, Puhlmann H, Zirlewagen D, von Wilpert K, Feger KH (2009) Bodenschutzkalkungen in Wäldern zur Verbesserung der Wasserqualität – Vergleichende Untersuchungen auf Einzugsgebietsebene. Z Hydrol Wasserbewirtschaftung 53:250–262

    CAS  Google Scholar 

  • Tetzlaff D, Malcolm IA, Soulsby C (2007) Influence of forestry, environmental change and climatic variability on the hydrology, hydrochemistry and residence times of upland catchments. J Hydrol 346:93–111

    Article  Google Scholar 

  • The European Parliament and the Council of the European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework in the field of water policy (EU Water Framework Directive). Off J Eur Commun L327:1–72

    Google Scholar 

  • The European Parliament and the Council of the European Union (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (EU Floods Directive). Off J Eur Commun L288:27–34

    Google Scholar 

  • Troch PA, Conllo GA, Heidbuchel l, Rajagopal s, Switonek M, Volhmann THM,Vager M (2008) Dealing with LandscapeHetrogenity in watershed Hydrology Geography compass 3(1):375–392

    Google Scholar 

  • Uhlenbrook S, Roser S, Tilch N (2004) Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model. J Hydrol 291:278–296

    Article  CAS  Google Scholar 

  • USDA Forest Service (2000) In: Gucinski H, Furniss M (eds) Forest roads: a synthesis of scientific information. United State Department of Agriculture, Forest Service, Washington DC, www.fs.fed.us/news/roads/science.pdf

    Google Scholar 

  • Van den Bos R, Hoffmann L, Juilleret J, Matgen P, Pfister L (2006) Regional runoff prediction through aggregation of first-order hydrological process knowledge: a case study. Hydrol Sci J 51:1021–1038

    Article  Google Scholar 

  • Vohland M (2003) Optimierung modellgestützter Wasserhaushaltsbilanzierung durch fernerkundlich gestützte Parametrisierung landnutzungsabhängiger Größen. – Ph.D. thesis, University of Trier

    Google Scholar 

  • von Wilpert K (2007) Waldbauliche Steuerungsmöglichkeiten des Stoffhaushalts von Waldökosystemen am Beispiel von Buchen- und Fichtenvarianten der Conventwald-Fallstudie. Freiburger Forstl. Forschung, 237 S. u. Anhang

    Google Scholar 

  • von Wilpert K, Niederberger J, Puhlmann H (2007) Fallstudien zur Bewertung und Entwicklung forstbetrieblicher Optionen zur Sicherung der Wassergüte in bewaldeten Einzugsgebieten. Forschungsber. FZKA/BWPLUS (Förderkennz. BWR 22014), 43 S

    Google Scholar 

  • Von Wilpert V tirlewagan D (2001) Boden Vesanerning and Entwickling derWasser qualitot imbewaldeten Einzngsgebiet der Contwald Fallstudie Benchte Feiburger Foistliche Forstriching 33:123–138

    Google Scholar 

  • Weiler M, McDonnell JJ (2004) Virtual experiments A new approach for imporing process conceptnalization in hillscope hydrology, fournal of Hydrology, 285:3–18 doi:1016/50022–1694(03) 00271–3

    Google Scholar 

Download references

Acknowledgments

Some of the research underlying this article received support from the European Union as part of the INTERREG III B NWE-program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebhard Schüler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schüler, G., Pfister, L., Vohland, M., Seeling, S., Hill, J. (2010). Large Scale Approach to Forest and Water Interactions. In: Bredemeier, M., Cohen, S., Godbold, D., Lode, E., Pichler, V., Schleppi, P. (eds) Forest Management and the Water Cycle. Ecological Studies, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9834-4_24

Download citation

Publish with us

Policies and ethics