Skip to main content

Forest Management Effects on Below-Ground Hydrological Processes

  • 1386 Accesses

Part of the Ecological Studies book series (ECOLSTUD,volume 212)

Abstract

Forests significantly affect their own and adjacent environments. These effects can be modified through management practices that influence tree species composition, structure, texture and the density of forest stands. Resulting changes exert an impact on below-ground hydrological processes in forests ecosystems, e.g. infiltration, redistribution and seepage. The choice of tree species, thinning and tending, application of forest management systems, rotation periods, as well as ditching or burning exert decisive impacts on the most important water transport routes and interfaces, as well as processes and parameters associated with them. They include leaf area index, roughness and albedo of forest canopies, interception and its spatial variability, stemflow, surface humus layer properties, water repellency of soils, desiccation and others. All of them exist in a highly heterogeneous environment that results in non-uniform and unstable flow of water. Finally, the influence of forest management practices on the quality of water (mainly nitrogen content) in forest ecosystems is discussed.

Keywords

  • Forest Soil
  • Soil Water Content
  • Forest Management
  • Coarse Woody Debris
  • Preferential Flow

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9834-4_16
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9834-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5

References

  • Ahti E (1983) Fertiliser-induced leaching of phosphorus and potassium from peatlands drained for forestry. Comm Inst For Fenn 111:1–20

    Google Scholar 

  • Albers D, Migge S, Schaefer M, Scheu S (2004) Decomposition of beech leaves (Fagus silvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem 36:155–164

    CAS  CrossRef  Google Scholar 

  • Åström M, Aaltonen EK, Koivusaari J (2002) Impact of forest ditching on nutrient loadings of a small stream – a paired catchment study in Kronoby, W. Finland. Sci Total Environ 297:127–140

    PubMed  CrossRef  Google Scholar 

  • Åström M, Aaltonen EK, Koivusaari J (2005) Changes in leaching patterns of nitrogen and phosphorus after artificial drainage of a boreal forest – a paired catchment study in Lappajärvi, western Finland. Boreal Environ Res 10:67–78

    Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann Forest Sci 57:287–301

    CrossRef  Google Scholar 

  • Aussenac G, Granier A (1988) Effects of thinning on water stress and growth in Douglas fir. Can Forest Res 1:100–105

    CrossRef  Google Scholar 

  • Badoux A, Jeisy M, Kienholz H, Lüscher P, Weingartner R, Witzig J, Hegg C (2006) Influence of storm damage on the runoff generation in two sub-catchments of the Sperbelgraben, Swiss Emmental. Eur J For Res 125:27–41

    CrossRef  Google Scholar 

  • Bartoli F, Regalado CM, Basile A, Buurman P, Coppola A (2007) Physical properties in European volcanic soils: a synthesis and recent developments, 2007. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, Garcia-Rodeja E (eds) Soils of volcanic regions in Europe. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Barton L, McLay CDA, Schipper LA, Smith CT (1999) Denitrification rates in a wastewater-irrigated forest soil in New Zealand. J Environ Qual 28:2008–2014

    CAS  CrossRef  Google Scholar 

  • Bärwolf M (2006) Soil properties. In: Measurements of Max Planck Inst. for Biogeochemistry at the Tatra windthrow sites. Jena CD –ROM

    Google Scholar 

  • Black TA, Kelliher FM (1989) Processes controlling understorey evapotranspiration. Phil Trans R Soc Lond B 324:207–231

    CrossRef  Google Scholar 

  • Bogner C, Engelhardt S, Zeilinger J, Huwe B (2008) Visualisation and analysis of flow patterns and water flow simulations in disturbed and undisturbed tropical soils. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of ecuador, vol 198, Ecological studies. Springer Verlag, Berlin/Heidelberg

    CrossRef  Google Scholar 

  • Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    CrossRef  Google Scholar 

  • Brais S, Sadi F, Bergeron Y, Grenier Y (2005) Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. For Ecol Manag 220:216–226

    CrossRef  Google Scholar 

  • Breda N, Granier A, Aussenac G (1995) Effects of thinning on soil water balance and tree water relations, transpiration and growth in oak forest (Quercus petraea (Matt) Liebl.). Tree Physiol 15:295–306

    PubMed  CrossRef  Google Scholar 

  • Brêthes A, Brun JJ, Jabiol B, Ponge JF, Toutain F (1995) Classification of forest humus forms: a French proposal. Ann For Sci 52:535–546

    CrossRef  Google Scholar 

  • Briggs RD, Hornbeck JW, Smith CT, Lemin RC Jr, McCormack ML Jr (2000) Long-term effects of forest management on nutrient cycling in spruce-fir forests. Forest Ecol Manag 138:285–299

    CrossRef  Google Scholar 

  • Brown TC, Binkley D (1994) Effect of management on water quality in North American Forests. USDA Forest Service General Technical Report RM-248

    Google Scholar 

  • Callesen I, Raulund-Rasmussen K, Gundersen P, Stryhn H (1999) Nitrate concentrations in soil solutions below Danish forests. Forest Ecol Manage 114:71–82

    CrossRef  Google Scholar 

  • Campbell CG, Garrido F, Ghodrati M (2004) Role of leaf litter in initiating tracer transport pathways in a woodland hillslope soil. Soil Sci 169:100–114

    CAS  CrossRef  Google Scholar 

  • Creedy J, Wurzbacher A (2001) The economic value of a forested catchment with timber, water and carbon sequestration benefits. Ecol Econ 38:71–83

    CrossRef  Google Scholar 

  • Čermák J, Matysek R, Kučera J (1993) Příčiny odumíraní vyspělých buků na těžkých půdach po náhlem proředení porostu. Lesnictví – Forestry 39:175–183

    Google Scholar 

  • Cummins T, Farrell EP (2003) Biogeochemical impacts of clearfelling and reforestation on blanket peatland streams. I. Phosphorus. Forest Ecol Manag 180:545–555

    CrossRef  Google Scholar 

  • Dahlgren RA, Driscoll CT (1994) The effects of whole-tree-clear-cutting at the Hubbard-Brook-Experimental-Forest, New-Hampshire, USA. Plant Soil 158:239–262

    CAS  CrossRef  Google Scholar 

  • David JF, Ponge JF, Arpin P, Vannier G (1991) Reactions of the macrofauna of a forest mull to experimental perturbations of litter supply. Oikos 6:316–326

    CrossRef  Google Scholar 

  • De la Crétaz AL, Barten PK (2007) Land use effects on streamflow and water quality in the northeastern United States. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Dinel H, Schnitzer M, Mehuys GR (1990) Soil lipids: origin, nature, content, decomposition, and effect on soil physical. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York

    Google Scholar 

  • Eguchi S, Hasegawa S (2008) Determination and characterization of preferential water flow in unsaturated subsoil of andisol. Soil Sci Soc Am J 72:320–330

    CAS  CrossRef  Google Scholar 

  • Emmett BA, Anderson JM, Hornung M (1991a) Nitrogen sinks following two intensities of harvesting in a Sitka spruce forest (N. Wales) and the effect on the establishment of the next crop. Forest Ecol Manag 41:81–93

    CrossRef  Google Scholar 

  • Emmett BA, Anderson JM, Hornung M (1991b) The controls on dissolved nitrogen losses following two intensities of harvesting in a Sitka spruce forest (N. Wales). Forest Ecol Manag 41:65–80

    CrossRef  Google Scholar 

  • Fisher RF, Binkley D (2000) Long-term Soil Productivity. In: Fisher RF, Binkley D (eds) Ecology and management of forest soils, 3rd edn. Wiley, New York

    Google Scholar 

  • FOEN (2009) Ergebnisse der Grundwasserbeobachtung Schweiz (NAQUA). Zustand und Entwicklung 2004–2006. Umwelt-Zustand 0903. Federal Office for the Environment FOEN, Bern, Switzerland

    Google Scholar 

  • Gerke HH, van Genuchten MTh (1993) A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res 29:305–319

    CAS  CrossRef  Google Scholar 

  • Gibson CE (1976) An investigation into the effects of forestry plantations on the water quality of upland reservoirs in Northern Ireland. Water Res 10:995–998

    CAS  CrossRef  Google Scholar 

  • Germann P, Beven K (1981) Water flow in soil macropores I. An experimental approach. J Soil Sci 32:1–13

    CrossRef  Google Scholar 

  • Germann P, Beven K (1985) Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resour Res 21:990–996

    CrossRef  Google Scholar 

  • Gersper PL, Holowaychuk N (1970) Effect of stemflow water on a Miami soil under a Beech Tree. Morphological and physical properties. Soil Sci Soc Am Proc 34:779–786

    CrossRef  Google Scholar 

  • Gömöryová E, Střelcová K, Škvarenina J, Bebej J, Gömöry D (2008) The impact of windthrow and fire disturbances on selected soil properties in the Tatra National Park. Soil Water Res 3(Special Issue 1):574–580

    Google Scholar 

  • Grace JM III (2005) Forest operations and water quality in the South. Trans ASAE 48:871–880

    CAS  Google Scholar 

  • Grace JM III, Clinton BD (2007) Protecting soil and water in forest road management. Trans ASABE 50:1579–1584

    Google Scholar 

  • Granier A, Aubinet M, Epron D, Falge E, Gudmundsson J, Jensen NO, Köstner B, Matteucci G, Pilegaard K, Schmidt M, Tenhunen J (2003) Deciduous forests: carbon and water fluxes, balances and ecophysiological determinants. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests, vol 163, Ecological Studies. Springer Verlag, Berlin

    Google Scholar 

  • Gregor J (1999) Influence of beech stand density and relief on soil moisture. (In Slovak, with English abstract). Vedecké štúdie 7/1999/A. Technical University in Zvolen

    Google Scholar 

  • Grigal DF (2000) Effects of extensive forest management on soil productivity. Forest Ecol Manag 138:167–185

    CrossRef  Google Scholar 

  • Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperateforests – effects of air pollution and forest management. Environ Rev 14:1–57

    CAS  CrossRef  Google Scholar 

  • Harmon ME, Sexton J (1995) Water balance of conifer logs in early stages of decomposition. Plant Soil 172:141–152

    CAS  CrossRef  Google Scholar 

  • Hegg Ch, Jeisy M, Waldner P (2004) Wald und Trinkwasser. Eine Literaturstudie. Eidg. Forschungsanstalt WSL, Birmensdorf, Switzerland

    Google Scholar 

  • Hlavatá H, Holko L, Kostka Z, Novák J (2008) Analysis of precipitation – runoff relations at small watershed of High Tatras (In Czech, with English abstract). In: Šír M, Tesař M, Lichner L (eds) Proceedings of the international conference on hydrology of small catchments. Institute of Hydrology, Czech Academy of Sciences, Praha

    Google Scholar 

  • Holko L, Škvarenina J, Kostka Z, Frič M, Staroň J (2009) Impact of spruce forest on rainfall interception and seasonal snow cover in the Western Tatra Mountains, Slovakia. Biologia 64:594–599

    CrossRef  Google Scholar 

  • Holst T, Hauser S, Kirchgässner A, Matzarakis A, Mayer H, Schindler D (2004) Measuring and modeling plant area index in beech stands. Int J Biometeorol 48:192–201

    PubMed  CAS  CrossRef  Google Scholar 

  • Horváth B, Meiwes KJ, Meesenburg H (2009) Die Bedeutung von Baumart und Bestandesalter für die Nitrat-versickerung unter Wald in der Region Weser-Ems. Forstarchiv 80:35–4

    Google Scholar 

  • Huber C, Weis W, Baumgarten M, Göttlein A (2004a) Spatial and temporal variation of seepage water chemistry after femel and small scale clear-cutting in a N-saturated Norway spruce stand. Plant Soil 267:23–40

    CAS  CrossRef  Google Scholar 

  • Huber C, Baumgarten M, Göttlein A, Rotter V (2004b) Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest National Park. Water Air Soil Pollut Focus 4:391–414

    CAS  CrossRef  Google Scholar 

  • Ježík M, Voško M (2002) Diameter increment of beech trees and its trends on permanent research plots with various stand densities. Ekol – Bratislava 21(suppl2):80–90

    Google Scholar 

  • Jochheim H, Schäfer H (1988) “Die Baumfuss–Methode” dargestellt anhand einer Untersuchung der Immissionsbelastung von Nordwest–Jugoslawischen Buchenwälder. Z Pflanz Bodenkunde 15:81–85

    CrossRef  Google Scholar 

  • Joensuu S, Ahti W, Vuollekoski M (1998) Quality of runoff water from old ditch networks in Finnish peatland forests. The Spirit of Peatlands. Jyväskyla, Finland

    Google Scholar 

  • Johnson S, Lehmann J (2006) Stemflow and root-induced preferential flow: the double-funneling of trees. Ecoscience 13:324–333

    CrossRef  Google Scholar 

  • Jury WA, Scotter DR (1994) A unified approach to stochastic-convective transport problems. Soil Sci Soc Am J 58:1327–1336

    CrossRef  Google Scholar 

  • Jury WA, Wang Z, Tuli A (2003) A conceptual model of unstable flow in unsaturated soil during redistribution. Vadose Zone J 2:61–67

    Google Scholar 

  • Kantor P (1984) Water-regulation function of Mountainous spruce and beech stands. Lesnictví – Forestry 30:471–490

    Google Scholar 

  • Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. J Hydrol 314:263–274

    CrossRef  Google Scholar 

  • Kenderes K, Mihók B, Standovár T (2008) Thirty years of gap dynamics in a Central European beech forest reserve. Forestry 81:111–123

    CrossRef  Google Scholar 

  • Kenttamies K (1981) The effects on water quality of forest drainage and fertilisation in peatlands. Water Research Institute Publication No. 43. National Board of Waters, Finland

    Google Scholar 

  • Kermen J, Janota-Bassalik L (1997) A note on the forest soil as a biological filter in the sanitary purification of municipal waste water evaluated on the basis of Escherichia coli titre. Acta Microbiol Pol 36:109–18

    Google Scholar 

  • Kim DJ, Burger JA (1997) Nitrogen transformations and soil processes in a wastewater-irrigated mature Appalachian hardwood forest. Forest Ecol Manag 90:1–11

    CrossRef  Google Scholar 

  • Kirkham D, Powers WL (1972) Advanced soil physics. Wiley Interscience, New York

    Google Scholar 

  • Koshi PT (1959) Soil-moisture trends under varying densities of oak over story. US Forest Serv South Forest Expt Sta Occas Paper 167

    Google Scholar 

  • Kozlowski TT (1999) Soil compaction and growth of woody plants. Scand J For Res 14:596–619

    Google Scholar 

  • Koivusalo H, Ahti E, Laurén A, Kokkonen T, Karvonen T, Nevalainen R, Finér L (2008) Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrol Earth Syst Sci 12:1211–1227

    CrossRef  Google Scholar 

  • Kreutzweiser DP, Hazlett PW, Gunn JM (2008) Logging impacts on the biogochemistry of boreal forest soils and nutrient export to aquatic systems. Environ Rev 16:157–179

    CAS  CrossRef  Google Scholar 

  • Kubin E (1998) Leaching of nitrate nitrogen into the groundwater after clear felling and site preparation. Boreal Environ Res 3:3–8

    CAS  Google Scholar 

  • Kutílek M, Nielsen DR (1994) Soil hydrology. Catena, Cremlingen-Destedt

    Google Scholar 

  • Legout A, Nys C, Picard JF, Turpault MP, Dambrine E (2009) Effects of storm Lothar (1999) on the chemical composition of soil solutions and on herbaceous cover, humus and soils (Fougères, France). Forest Ecol Manag 257:800–811

    CrossRef  Google Scholar 

  • Livesley SJ, Adams MA, Grierson PF (2007) Soil water nitrate and ammonium dynamics under a sewage effluent irrigated Eucalypt plantation. J Environ Qual 36:1883–1894

    PubMed  CAS  CrossRef  Google Scholar 

  • Magesan GN, Vogeler I, Clothier BE, Green SR, Lee R (2003) Solute movement through an allophanic soil. J Environ Qual 32:2325–2333

    PubMed  CAS  CrossRef  Google Scholar 

  • Malcolm DC, Cuttle SP (1983) The application of fertilisers to drained peat 1. Nutrient losses in drainage. Forestry 56:155–173

    CrossRef  Google Scholar 

  • Manninen P (1998) Effects of forestry ditch cleaning and supplementary ditching on water quality. Boreal Environ Res 3:23–32

    CAS  Google Scholar 

  • Meesenburg H, Jansen M, Döring C, Beese F, Rüping U, Möhring B, Hentschel S, Meiwes KJ, Spellmann H (2005) Konzept zur Beurteilung der Auswirkungen forstlicher Maßnahmen auf den Gewässerzustand nach den Anforderungen der EG-Wasserrahmenrichtlinie. Ber Freiburger Forstl Forschung 62:171–180

    Google Scholar 

  • Mattsson T, Finér L, Kortelainen P, Sallantaus T (2003) Brook water quality and background leaching from unmanaged forested catchments in Finland. Water Air Soil Poll 147:275–297

    CAS  CrossRef  Google Scholar 

  • Mellert KH, Kölling C, Rehfuess KE (1996) Stoffauswaschung aus Fichtenwaldökosystemen Bayerns nach Sturmwurf. Forstwiss Centralbl 115:363–377

    CAS  CrossRef  Google Scholar 

  • Merino A, Balboa MA, Rodríguez Soalleiro R, González Á (2005) Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. Forest Ecol Manag 207:325–339

    CrossRef  Google Scholar 

  • Miklánek P, Pekárová P (2006) Interception assessment in experimental microbasins of IH SAS with spruce and hornbeam vegetation (In Slovak, with English abstract). J Hydrol Hydromech 54:123–136

    Google Scholar 

  • Mou P, Fahey TJ, Hughes JW (1993) Effects of soil disturbance on vegetation recovery and nutrient accumulation following whole-tree harvest of a northern hardwood ecosystem. J Appl Ecol 30:661–675

    CrossRef  Google Scholar 

  • Nachtergale L, Ghekiere K, De Schrijver A, Muys B, Luyssaert S, Lust N (2002) Earthworm biomass and species diversity in windthrow sites of a temperate lowland forest. Pedobiologia 46:440–451

    CrossRef  Google Scholar 

  • Nagel TA, Diaci J (2006) Intermediate wind disturbance in an old-growth beech-fir forest in Southeastern Slovenia. Can J For Res 36:629–63

    CrossRef  Google Scholar 

  • Nieminen M (1999) Phosphorus fertilizer leaching from drained ombrotrophic peatland forests: empirical studies and modeling. Finnish Forest Research Institute Research Paper 756

    Google Scholar 

  • Nieminen M (2003) Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland. Boreal Environ Res 8:53–59

    CAS  Google Scholar 

  • Nieminen M, Ahti E (1993) Leaching of nutrients from an ombrotrophic peatland area after fertilizer application on snow. Folia Forestalia 814:3–22

    Google Scholar 

  • Nieminen M, Jarva M (1996) Phosphorus adsorption by peat from drained mires in southern Finland. Scand J Forest Res 11:321–326

    CrossRef  Google Scholar 

  • Novák V (1995) Evaporation of water and methods of its estimation. (In Slovak). VEDA, Bratislava

    Google Scholar 

  • Novák V, Kňava K (2008) Forest soil water content annual courses as influenced by canopy properties. In: Rožnovský J, Litschmann T (eds) Bioklimatologické aspekty hodnocení procesu v krajině. Institute Creation and Protection of Landscape, Mendel University, Brno, Czech Republic (CD-ROM)

    Google Scholar 

  • Novák V, Lichner L, Zhang B, Kňava K (2009) The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia 64:483–486

    CrossRef  Google Scholar 

  • Papritz A, Diserens E, Schneebeli M (1991) Einfluss des Bodenwasserhaushalts auf die Transpiration von Waldbäumen – eine Literaturübersicht In: Pankow W (ed) Schlussbericht des Nationalen Forschungsprogrammes Nr. 14: Luftverschmutzung und Waldschäden in der Schweiz. Verlag der Fachvereine, Zürich

    Google Scholar 

  • Pichler V (2007) Beech stands density as a aool for the regulation of soils hydric and environmental functions. (In Slovak, with English abstract). Technical University in Zvolen, Zvolen

    Google Scholar 

  • Pichler V, Bublinec E, Gregor J (2006) Acidification of forest soils in Slovakia – causes and consequences. J Forest Sci 52:23–27

    Google Scholar 

  • Pichler V, Ďurkovič J, Capuliak J, Ďurkovič J, Pichlerová M (2009) Altitudinal variability of the soil water content in natural and managed beech (Fagus sylvatica L.) forests. Pol J Ecol 58:313–319

    Google Scholar 

  • Piirainen S, Finér L, Mannerkoski H, Starr M (2007) Carbon, nitrogen and phosphorous leaching after site preparation at a boreal forest clear-cut area. Forest Ecol Manag 243:10–18

    CrossRef  Google Scholar 

  • Prévost M, Plamondon AP, Belleau P (1999) Effects of drainage of a forested peatland on water quality and quantity. J Hydrol 214:130–143

    CrossRef  Google Scholar 

  • Philip JR (1957a) The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci 83:345–357

    CAS  CrossRef  Google Scholar 

  • Philip JR (1957b) Numerical solutions of equations of the diffusion type with diffusivity concentration dependent II. Aust J Phys 10:29–42

    CrossRef  Google Scholar 

  • Ponge JF (1999) Horizons and humus forms in beech forests of the Belgian Ardennes. Soil Sci Soc Am J 63:1888–1901

    CAS  CrossRef  Google Scholar 

  • Ponge JF, Delhaye L (1995) The heterogeneity of humus profiles and earthworm communities in a virgin beech forest. Biol Fert Soils 20:24–32

    CrossRef  Google Scholar 

  • Qualls RG, Haines BL, Swank WT, Tyler SW (2002) Retention of dissolved organic nutrients by a forested ecosystem. Biogeochemistry 61:135–171

    CAS  CrossRef  Google Scholar 

  • Raat KJ, Draaijers GPJ, Schaap MG, Tietema A, Verstraten JM (2002) Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand. Hydrol Earth Syst Sci 6:363–374

    CrossRef  Google Scholar 

  • Reifsnyder WE (1988) Hydrologic process models. In: Reynolds ERC, Thompson FB (eds) Forests, climate, and hydrology: regional impacts. United Nations University, Tokyo

    Google Scholar 

  • Reiter ML, Beschta RL (1995) Effects of forest practices on water. In: Beschta RL, Boyle JR, Chambers CC, Gibson WP, Gregory SV, Grizzel J, Haga JC, Li JL, McComb WC, Parzybok TW, Reiter ML, Taylor GH, Warila JE (eds) Cumulative effects of forest practices in Oregon: literature and synthesis. Oregon Department of Forestry, Salem, OR

    Google Scholar 

  • Roberts J (1983) Forest transpiration: a conservative hydrological process? J Hydrol 66:133–141

    CrossRef  Google Scholar 

  • Roberts J (2000) The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrol Process 14:2885–2901

    CrossRef  Google Scholar 

  • Robertson SMC, Hornung M, Kennedy VH (2000) Water chemistry of throughfall and soil water under four tree species at Gisburn, northwest England, before and after felling. Forest Ecol Manag 129:101–117

    CrossRef  Google Scholar 

  • Rode AA (1952) Soil Moisture. (In Russian) Izd AN SSSR, Moscow

    Google Scholar 

  • Rothe A, Mellert KH (2004) Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water Air Soil Poll 156:337–355

    CAS  CrossRef  Google Scholar 

  • Scherer R, Pike R (2003) Effects of forest management activities on streamflow in the Okanagan Basin, British Columbia: outcomes of a literature review and a workshop, vol 9, Forrex Series. Forrex, Kamloops, B.C

    Google Scholar 

  • Skopp J, Gardner WR, Tyler EJ (1981) Solute movement in structured soils: two-region model with small interaction. Soil Sci Soc Am J 45:837–842

    CrossRef  Google Scholar 

  • Smolander A, Paavolainen L, Mälkönen E (2000) C and N transformations in forest soil after mounding for regeneration. Forest Ecol Manag 134:17–28

    CrossRef  Google Scholar 

  • Stadler D, Stähli M, Aeby P, Flühler H (2000) Dye tracing and image analysis for quantifying water infiltration into frozen soils. Soil Sci Soc Am J 64:505–516

    CAS  CrossRef  Google Scholar 

  • Stednick JD (1996) Monitoring the effects of timber harvest on annual water yield. J Hydrol 176:79–95

    CrossRef  Google Scholar 

  • Stednick JD (2000) Timber management. In: Dissmeyer GE (ed) Drinking water from forests and grasslands. A Synthesis of the scientific literature. Gen. Tech. Rep. SRS-39. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC

    Google Scholar 

  • Steenhuis TS, Parlange J-Y, Andreini MS (1990) A numerical model of preferential solute movement in structured soils. Geoderma 46:199–208

    CrossRef  Google Scholar 

  • Střelcová K, Matejka F, Minďáš J (2002) Estimation of beech tree transpiration in relation to their social status in forest stand. J Forest Sci 48:130–140

    Google Scholar 

  • Šály R (1986) Slope deposits and soil of the Western Carpathians. (In Slovak, with English abstract). Veda, Bratislava

    Google Scholar 

  • Torres R (2002) A treshold condition for soil-water transport. Hydrol Process 16:2703–2706

    CrossRef  Google Scholar 

  • Valentini R (ed) (2003) Fluxes of carbon, water and energy of European forests, vol 163, Ecological studies. Springer, Berlin

    Google Scholar 

  • v. Wilpert K, Zirlewagen D, Kohler M (2000) To what extent can silviculture enhance sustainability of forest sites under the immission regime in Central Europe? Water Air Soil Poll 122:105–120

    CrossRef  Google Scholar 

  • Walsh RD, Voigt PJ (1977) Vegetation litter: an underestimated variable in hydrology and geomorphology. J Biogeogr 4:253–274

    CrossRef  Google Scholar 

  • Warrick AW (2003) Soil water dynamics. Oxford University Press, New York

    Google Scholar 

  • Weiler M, Flühler F (2004) Inferring flow types from dye patterns in macroporous soils. Geoderma 120:137–153

    CrossRef  Google Scholar 

  • Weis W, Rotter V, Göttlein A (2006) Water and element fluxes during the regeneration of Norway spruce with European beech: effects of shelterwood-cut and clear-cut. Forest Ecol Manag 224:304–317

    CrossRef  Google Scholar 

  • Wuyts K, De Schrijver A, Staelens J, Gielis L, Vandenbruwane J, Verheyen K (2008) Comparison of forest edge effects on throughfall deposition in different forest types. Environ Pollut 156:854–861

    PubMed  CAS  CrossRef  Google Scholar 

  • Ziegler F, Zech W (1989) Distribution pattern of total lipid fractions in forest humus. Z Pflanzenernaehr Bodenkd 152:287–290

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

Parts of this work have been funded by the APVV project No. 0468/06, VEGA 1/0723/08 and MVTS related to FP0601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viliam Novák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Novák, V., Pichler, V., Graf-Pannatier, E., Farrell, E.P., Homolák, M. (2010). Forest Management Effects on Below-Ground Hydrological Processes. In: Bredemeier, M., Cohen, S., Godbold, D., Lode, E., Pichler, V., Schleppi, P. (eds) Forest Management and the Water Cycle. Ecological Studies, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9834-4_16

Download citation