Advertisement

Forest Management Effects on Below-Ground Hydrological Processes

  • Viliam Novák
  • Viliam Pichler
  • Elisabeth Graf-Pannatier
  • Edward P. Farrell
  • Marián Homolák
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 212)

Abstract

Forests significantly affect their own and adjacent environments. These effects can be modified through management practices that influence tree species composition, structure, texture and the density of forest stands. Resulting changes exert an impact on below-ground hydrological processes in forests ecosystems, e.g. infiltration, redistribution and seepage. The choice of tree species, thinning and tending, application of forest management systems, rotation periods, as well as ditching or burning exert decisive impacts on the most important water transport routes and interfaces, as well as processes and parameters associated with them. They include leaf area index, roughness and albedo of forest canopies, interception and its spatial variability, stemflow, surface humus layer properties, water repellency of soils, desiccation and others. All of them exist in a highly heterogeneous environment that results in non-uniform and unstable flow of water. Finally, the influence of forest management practices on the quality of water (mainly nitrogen content) in forest ecosystems is discussed.

Keywords

Forest Soil Soil Water Content Forest Management Coarse Woody Debris Preferential Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Parts of this work have been funded by the APVV project No. 0468/06, VEGA 1/0723/08 and MVTS related to FP0601.

References

  1. Ahti E (1983) Fertiliser-induced leaching of phosphorus and potassium from peatlands drained for forestry. Comm Inst For Fenn 111:1–20Google Scholar
  2. Albers D, Migge S, Schaefer M, Scheu S (2004) Decomposition of beech leaves (Fagus silvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem 36:155–164CrossRefGoogle Scholar
  3. Åström M, Aaltonen EK, Koivusaari J (2002) Impact of forest ditching on nutrient loadings of a small stream – a paired catchment study in Kronoby, W. Finland. Sci Total Environ 297:127–140PubMedCrossRefGoogle Scholar
  4. Åström M, Aaltonen EK, Koivusaari J (2005) Changes in leaching patterns of nitrogen and phosphorus after artificial drainage of a boreal forest – a paired catchment study in Lappajärvi, western Finland. Boreal Environ Res 10:67–78Google Scholar
  5. Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann Forest Sci 57:287–301CrossRefGoogle Scholar
  6. Aussenac G, Granier A (1988) Effects of thinning on water stress and growth in Douglas fir. Can Forest Res 1:100–105CrossRefGoogle Scholar
  7. Badoux A, Jeisy M, Kienholz H, Lüscher P, Weingartner R, Witzig J, Hegg C (2006) Influence of storm damage on the runoff generation in two sub-catchments of the Sperbelgraben, Swiss Emmental. Eur J For Res 125:27–41CrossRefGoogle Scholar
  8. Bartoli F, Regalado CM, Basile A, Buurman P, Coppola A (2007) Physical properties in European volcanic soils: a synthesis and recent developments, 2007. In: Arnalds O, Bartoli F, Buurman P, Oskarsson H, Stoops G, Garcia-Rodeja E (eds) Soils of volcanic regions in Europe. Springer-Verlag, Berlin/HeidelbergGoogle Scholar
  9. Barton L, McLay CDA, Schipper LA, Smith CT (1999) Denitrification rates in a wastewater-irrigated forest soil in New Zealand. J Environ Qual 28:2008–2014CrossRefGoogle Scholar
  10. Bärwolf M (2006) Soil properties. In: Measurements of Max Planck Inst. for Biogeochemistry at the Tatra windthrow sites. Jena CD –ROMGoogle Scholar
  11. Black TA, Kelliher FM (1989) Processes controlling understorey evapotranspiration. Phil Trans R Soc Lond B 324:207–231CrossRefGoogle Scholar
  12. Bogner C, Engelhardt S, Zeilinger J, Huwe B (2008) Visualisation and analysis of flow patterns and water flow simulations in disturbed and undisturbed tropical soils. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of ecuador, vol 198, Ecological studies. Springer Verlag, Berlin/HeidelbergCrossRefGoogle Scholar
  13. Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23CrossRefGoogle Scholar
  14. Brais S, Sadi F, Bergeron Y, Grenier Y (2005) Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. For Ecol Manag 220:216–226CrossRefGoogle Scholar
  15. Breda N, Granier A, Aussenac G (1995) Effects of thinning on soil water balance and tree water relations, transpiration and growth in oak forest (Quercus petraea (Matt) Liebl.). Tree Physiol 15:295–306PubMedCrossRefGoogle Scholar
  16. Brêthes A, Brun JJ, Jabiol B, Ponge JF, Toutain F (1995) Classification of forest humus forms: a French proposal. Ann For Sci 52:535–546CrossRefGoogle Scholar
  17. Briggs RD, Hornbeck JW, Smith CT, Lemin RC Jr, McCormack ML Jr (2000) Long-term effects of forest management on nutrient cycling in spruce-fir forests. Forest Ecol Manag 138:285–299CrossRefGoogle Scholar
  18. Brown TC, Binkley D (1994) Effect of management on water quality in North American Forests. USDA Forest Service General Technical Report RM-248Google Scholar
  19. Callesen I, Raulund-Rasmussen K, Gundersen P, Stryhn H (1999) Nitrate concentrations in soil solutions below Danish forests. Forest Ecol Manage 114:71–82CrossRefGoogle Scholar
  20. Campbell CG, Garrido F, Ghodrati M (2004) Role of leaf litter in initiating tracer transport pathways in a woodland hillslope soil. Soil Sci 169:100–114CrossRefGoogle Scholar
  21. Creedy J, Wurzbacher A (2001) The economic value of a forested catchment with timber, water and carbon sequestration benefits. Ecol Econ 38:71–83CrossRefGoogle Scholar
  22. Čermák J, Matysek R, Kučera J (1993) Příčiny odumíraní vyspělých buků na těžkých půdach po náhlem proředení porostu. Lesnictví – Forestry 39:175–183Google Scholar
  23. Cummins T, Farrell EP (2003) Biogeochemical impacts of clearfelling and reforestation on blanket peatland streams. I. Phosphorus. Forest Ecol Manag 180:545–555CrossRefGoogle Scholar
  24. Dahlgren RA, Driscoll CT (1994) The effects of whole-tree-clear-cutting at the Hubbard-Brook-Experimental-Forest, New-Hampshire, USA. Plant Soil 158:239–262CrossRefGoogle Scholar
  25. David JF, Ponge JF, Arpin P, Vannier G (1991) Reactions of the macrofauna of a forest mull to experimental perturbations of litter supply. Oikos 6:316–326CrossRefGoogle Scholar
  26. De la Crétaz AL, Barten PK (2007) Land use effects on streamflow and water quality in the northeastern United States. CRC Press/Taylor & Francis, Boca Raton, FLGoogle Scholar
  27. Dinel H, Schnitzer M, Mehuys GR (1990) Soil lipids: origin, nature, content, decomposition, and effect on soil physical. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New YorkGoogle Scholar
  28. Eguchi S, Hasegawa S (2008) Determination and characterization of preferential water flow in unsaturated subsoil of andisol. Soil Sci Soc Am J 72:320–330CrossRefGoogle Scholar
  29. Emmett BA, Anderson JM, Hornung M (1991a) Nitrogen sinks following two intensities of harvesting in a Sitka spruce forest (N. Wales) and the effect on the establishment of the next crop. Forest Ecol Manag 41:81–93CrossRefGoogle Scholar
  30. Emmett BA, Anderson JM, Hornung M (1991b) The controls on dissolved nitrogen losses following two intensities of harvesting in a Sitka spruce forest (N. Wales). Forest Ecol Manag 41:65–80CrossRefGoogle Scholar
  31. Fisher RF, Binkley D (2000) Long-term Soil Productivity. In: Fisher RF, Binkley D (eds) Ecology and management of forest soils, 3rd edn. Wiley, New YorkGoogle Scholar
  32. FOEN (2009) Ergebnisse der Grundwasserbeobachtung Schweiz (NAQUA). Zustand und Entwicklung 2004–2006. Umwelt-Zustand 0903. Federal Office for the Environment FOEN, Bern, SwitzerlandGoogle Scholar
  33. Gerke HH, van Genuchten MTh (1993) A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res 29:305–319CrossRefGoogle Scholar
  34. Gibson CE (1976) An investigation into the effects of forestry plantations on the water quality of upland reservoirs in Northern Ireland. Water Res 10:995–998CrossRefGoogle Scholar
  35. Germann P, Beven K (1981) Water flow in soil macropores I. An experimental approach. J Soil Sci 32:1–13CrossRefGoogle Scholar
  36. Germann P, Beven K (1985) Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resour Res 21:990–996CrossRefGoogle Scholar
  37. Gersper PL, Holowaychuk N (1970) Effect of stemflow water on a Miami soil under a Beech Tree. Morphological and physical properties. Soil Sci Soc Am Proc 34:779–786CrossRefGoogle Scholar
  38. Gömöryová E, Střelcová K, Škvarenina J, Bebej J, Gömöry D (2008) The impact of windthrow and fire disturbances on selected soil properties in the Tatra National Park. Soil Water Res 3(Special Issue 1):574–580Google Scholar
  39. Grace JM III (2005) Forest operations and water quality in the South. Trans ASAE 48:871–880Google Scholar
  40. Grace JM III, Clinton BD (2007) Protecting soil and water in forest road management. Trans ASABE 50:1579–1584Google Scholar
  41. Granier A, Aubinet M, Epron D, Falge E, Gudmundsson J, Jensen NO, Köstner B, Matteucci G, Pilegaard K, Schmidt M, Tenhunen J (2003) Deciduous forests: carbon and water fluxes, balances and ecophysiological determinants. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests, vol 163, Ecological Studies. Springer Verlag, BerlinGoogle Scholar
  42. Gregor J (1999) Influence of beech stand density and relief on soil moisture. (In Slovak, with English abstract). Vedecké štúdie 7/1999/A. Technical University in ZvolenGoogle Scholar
  43. Grigal DF (2000) Effects of extensive forest management on soil productivity. Forest Ecol Manag 138:167–185CrossRefGoogle Scholar
  44. Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperateforests – effects of air pollution and forest management. Environ Rev 14:1–57CrossRefGoogle Scholar
  45. Harmon ME, Sexton J (1995) Water balance of conifer logs in early stages of decomposition. Plant Soil 172:141–152CrossRefGoogle Scholar
  46. Hegg Ch, Jeisy M, Waldner P (2004) Wald und Trinkwasser. Eine Literaturstudie. Eidg. Forschungsanstalt WSL, Birmensdorf, SwitzerlandGoogle Scholar
  47. Hlavatá H, Holko L, Kostka Z, Novák J (2008) Analysis of precipitation – runoff relations at small watershed of High Tatras (In Czech, with English abstract). In: Šír M, Tesař M, Lichner L (eds) Proceedings of the international conference on hydrology of small catchments. Institute of Hydrology, Czech Academy of Sciences, PrahaGoogle Scholar
  48. Holko L, Škvarenina J, Kostka Z, Frič M, Staroň J (2009) Impact of spruce forest on rainfall interception and seasonal snow cover in the Western Tatra Mountains, Slovakia. Biologia 64:594–599CrossRefGoogle Scholar
  49. Holst T, Hauser S, Kirchgässner A, Matzarakis A, Mayer H, Schindler D (2004) Measuring and modeling plant area index in beech stands. Int J Biometeorol 48:192–201PubMedCrossRefGoogle Scholar
  50. Horváth B, Meiwes KJ, Meesenburg H (2009) Die Bedeutung von Baumart und Bestandesalter für die Nitrat-versickerung unter Wald in der Region Weser-Ems. Forstarchiv 80:35–4Google Scholar
  51. Huber C, Weis W, Baumgarten M, Göttlein A (2004a) Spatial and temporal variation of seepage water chemistry after femel and small scale clear-cutting in a N-saturated Norway spruce stand. Plant Soil 267:23–40CrossRefGoogle Scholar
  52. Huber C, Baumgarten M, Göttlein A, Rotter V (2004b) Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest National Park. Water Air Soil Pollut Focus 4:391–414CrossRefGoogle Scholar
  53. Ježík M, Voško M (2002) Diameter increment of beech trees and its trends on permanent research plots with various stand densities. Ekol – Bratislava 21(suppl2):80–90Google Scholar
  54. Jochheim H, Schäfer H (1988) “Die Baumfuss–Methode” dargestellt anhand einer Untersuchung der Immissionsbelastung von Nordwest–Jugoslawischen Buchenwälder. Z Pflanz Bodenkunde 15:81–85CrossRefGoogle Scholar
  55. Joensuu S, Ahti W, Vuollekoski M (1998) Quality of runoff water from old ditch networks in Finnish peatland forests. The Spirit of Peatlands. Jyväskyla, FinlandGoogle Scholar
  56. Johnson S, Lehmann J (2006) Stemflow and root-induced preferential flow: the double-funneling of trees. Ecoscience 13:324–333CrossRefGoogle Scholar
  57. Jury WA, Scotter DR (1994) A unified approach to stochastic-convective transport problems. Soil Sci Soc Am J 58:1327–1336CrossRefGoogle Scholar
  58. Jury WA, Wang Z, Tuli A (2003) A conceptual model of unstable flow in unsaturated soil during redistribution. Vadose Zone J 2:61–67Google Scholar
  59. Kantor P (1984) Water-regulation function of Mountainous spruce and beech stands. Lesnictví – Forestry 30:471–490Google Scholar
  60. Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. J Hydrol 314:263–274CrossRefGoogle Scholar
  61. Kenderes K, Mihók B, Standovár T (2008) Thirty years of gap dynamics in a Central European beech forest reserve. Forestry 81:111–123CrossRefGoogle Scholar
  62. Kenttamies K (1981) The effects on water quality of forest drainage and fertilisation in peatlands. Water Research Institute Publication No. 43. National Board of Waters, FinlandGoogle Scholar
  63. Kermen J, Janota-Bassalik L (1997) A note on the forest soil as a biological filter in the sanitary purification of municipal waste water evaluated on the basis of Escherichia coli titre. Acta Microbiol Pol 36:109–18Google Scholar
  64. Kim DJ, Burger JA (1997) Nitrogen transformations and soil processes in a wastewater-irrigated mature Appalachian hardwood forest. Forest Ecol Manag 90:1–11CrossRefGoogle Scholar
  65. Kirkham D, Powers WL (1972) Advanced soil physics. Wiley Interscience, New YorkGoogle Scholar
  66. Koshi PT (1959) Soil-moisture trends under varying densities of oak over story. US Forest Serv South Forest Expt Sta Occas Paper 167Google Scholar
  67. Kozlowski TT (1999) Soil compaction and growth of woody plants. Scand J For Res 14:596–619Google Scholar
  68. Koivusalo H, Ahti E, Laurén A, Kokkonen T, Karvonen T, Nevalainen R, Finér L (2008) Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrol Earth Syst Sci 12:1211–1227CrossRefGoogle Scholar
  69. Kreutzweiser DP, Hazlett PW, Gunn JM (2008) Logging impacts on the biogochemistry of boreal forest soils and nutrient export to aquatic systems. Environ Rev 16:157–179CrossRefGoogle Scholar
  70. Kubin E (1998) Leaching of nitrate nitrogen into the groundwater after clear felling and site preparation. Boreal Environ Res 3:3–8Google Scholar
  71. Kutílek M, Nielsen DR (1994) Soil hydrology. Catena, Cremlingen-DestedtGoogle Scholar
  72. Legout A, Nys C, Picard JF, Turpault MP, Dambrine E (2009) Effects of storm Lothar (1999) on the chemical composition of soil solutions and on herbaceous cover, humus and soils (Fougères, France). Forest Ecol Manag 257:800–811CrossRefGoogle Scholar
  73. Livesley SJ, Adams MA, Grierson PF (2007) Soil water nitrate and ammonium dynamics under a sewage effluent irrigated Eucalypt plantation. J Environ Qual 36:1883–1894PubMedCrossRefGoogle Scholar
  74. Magesan GN, Vogeler I, Clothier BE, Green SR, Lee R (2003) Solute movement through an allophanic soil. J Environ Qual 32:2325–2333PubMedCrossRefGoogle Scholar
  75. Malcolm DC, Cuttle SP (1983) The application of fertilisers to drained peat 1. Nutrient losses in drainage. Forestry 56:155–173CrossRefGoogle Scholar
  76. Manninen P (1998) Effects of forestry ditch cleaning and supplementary ditching on water quality. Boreal Environ Res 3:23–32Google Scholar
  77. Meesenburg H, Jansen M, Döring C, Beese F, Rüping U, Möhring B, Hentschel S, Meiwes KJ, Spellmann H (2005) Konzept zur Beurteilung der Auswirkungen forstlicher Maßnahmen auf den Gewässerzustand nach den Anforderungen der EG-Wasserrahmenrichtlinie. Ber Freiburger Forstl Forschung 62:171–180Google Scholar
  78. Mattsson T, Finér L, Kortelainen P, Sallantaus T (2003) Brook water quality and background leaching from unmanaged forested catchments in Finland. Water Air Soil Poll 147:275–297CrossRefGoogle Scholar
  79. Mellert KH, Kölling C, Rehfuess KE (1996) Stoffauswaschung aus Fichtenwaldökosystemen Bayerns nach Sturmwurf. Forstwiss Centralbl 115:363–377CrossRefGoogle Scholar
  80. Merino A, Balboa MA, Rodríguez Soalleiro R, González Á (2005) Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. Forest Ecol Manag 207:325–339CrossRefGoogle Scholar
  81. Miklánek P, Pekárová P (2006) Interception assessment in experimental microbasins of IH SAS with spruce and hornbeam vegetation (In Slovak, with English abstract). J Hydrol Hydromech 54:123–136Google Scholar
  82. Mou P, Fahey TJ, Hughes JW (1993) Effects of soil disturbance on vegetation recovery and nutrient accumulation following whole-tree harvest of a northern hardwood ecosystem. J Appl Ecol 30:661–675CrossRefGoogle Scholar
  83. Nachtergale L, Ghekiere K, De Schrijver A, Muys B, Luyssaert S, Lust N (2002) Earthworm biomass and species diversity in windthrow sites of a temperate lowland forest. Pedobiologia 46:440–451CrossRefGoogle Scholar
  84. Nagel TA, Diaci J (2006) Intermediate wind disturbance in an old-growth beech-fir forest in Southeastern Slovenia. Can J For Res 36:629–63CrossRefGoogle Scholar
  85. Nieminen M (1999) Phosphorus fertilizer leaching from drained ombrotrophic peatland forests: empirical studies and modeling. Finnish Forest Research Institute Research Paper 756Google Scholar
  86. Nieminen M (2003) Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland. Boreal Environ Res 8:53–59Google Scholar
  87. Nieminen M, Ahti E (1993) Leaching of nutrients from an ombrotrophic peatland area after fertilizer application on snow. Folia Forestalia 814:3–22Google Scholar
  88. Nieminen M, Jarva M (1996) Phosphorus adsorption by peat from drained mires in southern Finland. Scand J Forest Res 11:321–326CrossRefGoogle Scholar
  89. Novák V (1995) Evaporation of water and methods of its estimation. (In Slovak). VEDA, BratislavaGoogle Scholar
  90. Novák V, Kňava K (2008) Forest soil water content annual courses as influenced by canopy properties. In: Rožnovský J, Litschmann T (eds) Bioklimatologické aspekty hodnocení procesu v krajině. Institute Creation and Protection of Landscape, Mendel University, Brno, Czech Republic (CD-ROM)Google Scholar
  91. Novák V, Lichner L, Zhang B, Kňava K (2009) The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia 64:483–486CrossRefGoogle Scholar
  92. Papritz A, Diserens E, Schneebeli M (1991) Einfluss des Bodenwasserhaushalts auf die Transpiration von Waldbäumen – eine Literaturübersicht In: Pankow W (ed) Schlussbericht des Nationalen Forschungsprogrammes Nr. 14: Luftverschmutzung und Waldschäden in der Schweiz. Verlag der Fachvereine, ZürichGoogle Scholar
  93. Pichler V (2007) Beech stands density as a aool for the regulation of soils hydric and environmental functions. (In Slovak, with English abstract). Technical University in Zvolen, ZvolenGoogle Scholar
  94. Pichler V, Bublinec E, Gregor J (2006) Acidification of forest soils in Slovakia – causes and consequences. J Forest Sci 52:23–27Google Scholar
  95. Pichler V, Ďurkovič J, Capuliak J, Ďurkovič J, Pichlerová M (2009) Altitudinal variability of the soil water content in natural and managed beech (Fagus sylvatica L.) forests. Pol J Ecol 58:313–319Google Scholar
  96. Piirainen S, Finér L, Mannerkoski H, Starr M (2007) Carbon, nitrogen and phosphorous leaching after site preparation at a boreal forest clear-cut area. Forest Ecol Manag 243:10–18CrossRefGoogle Scholar
  97. Prévost M, Plamondon AP, Belleau P (1999) Effects of drainage of a forested peatland on water quality and quantity. J Hydrol 214:130–143CrossRefGoogle Scholar
  98. Philip JR (1957a) The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci 83:345–357CrossRefGoogle Scholar
  99. Philip JR (1957b) Numerical solutions of equations of the diffusion type with diffusivity concentration dependent II. Aust J Phys 10:29–42CrossRefGoogle Scholar
  100. Ponge JF (1999) Horizons and humus forms in beech forests of the Belgian Ardennes. Soil Sci Soc Am J 63:1888–1901CrossRefGoogle Scholar
  101. Ponge JF, Delhaye L (1995) The heterogeneity of humus profiles and earthworm communities in a virgin beech forest. Biol Fert Soils 20:24–32CrossRefGoogle Scholar
  102. Qualls RG, Haines BL, Swank WT, Tyler SW (2002) Retention of dissolved organic nutrients by a forested ecosystem. Biogeochemistry 61:135–171CrossRefGoogle Scholar
  103. Raat KJ, Draaijers GPJ, Schaap MG, Tietema A, Verstraten JM (2002) Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand. Hydrol Earth Syst Sci 6:363–374CrossRefGoogle Scholar
  104. Reifsnyder WE (1988) Hydrologic process models. In: Reynolds ERC, Thompson FB (eds) Forests, climate, and hydrology: regional impacts. United Nations University, TokyoGoogle Scholar
  105. Reiter ML, Beschta RL (1995) Effects of forest practices on water. In: Beschta RL, Boyle JR, Chambers CC, Gibson WP, Gregory SV, Grizzel J, Haga JC, Li JL, McComb WC, Parzybok TW, Reiter ML, Taylor GH, Warila JE (eds) Cumulative effects of forest practices in Oregon: literature and synthesis. Oregon Department of Forestry, Salem, ORGoogle Scholar
  106. Roberts J (1983) Forest transpiration: a conservative hydrological process? J Hydrol 66:133–141CrossRefGoogle Scholar
  107. Roberts J (2000) The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrol Process 14:2885–2901CrossRefGoogle Scholar
  108. Robertson SMC, Hornung M, Kennedy VH (2000) Water chemistry of throughfall and soil water under four tree species at Gisburn, northwest England, before and after felling. Forest Ecol Manag 129:101–117CrossRefGoogle Scholar
  109. Rode AA (1952) Soil Moisture. (In Russian) Izd AN SSSR, MoscowGoogle Scholar
  110. Rothe A, Mellert KH (2004) Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water Air Soil Poll 156:337–355CrossRefGoogle Scholar
  111. Scherer R, Pike R (2003) Effects of forest management activities on streamflow in the Okanagan Basin, British Columbia: outcomes of a literature review and a workshop, vol 9, Forrex Series. Forrex, Kamloops, B.CGoogle Scholar
  112. Skopp J, Gardner WR, Tyler EJ (1981) Solute movement in structured soils: two-region model with small interaction. Soil Sci Soc Am J 45:837–842CrossRefGoogle Scholar
  113. Smolander A, Paavolainen L, Mälkönen E (2000) C and N transformations in forest soil after mounding for regeneration. Forest Ecol Manag 134:17–28CrossRefGoogle Scholar
  114. Stadler D, Stähli M, Aeby P, Flühler H (2000) Dye tracing and image analysis for quantifying water infiltration into frozen soils. Soil Sci Soc Am J 64:505–516CrossRefGoogle Scholar
  115. Stednick JD (1996) Monitoring the effects of timber harvest on annual water yield. J Hydrol 176:79–95CrossRefGoogle Scholar
  116. Stednick JD (2000) Timber management. In: Dissmeyer GE (ed) Drinking water from forests and grasslands. A Synthesis of the scientific literature. Gen. Tech. Rep. SRS-39. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, NCGoogle Scholar
  117. Steenhuis TS, Parlange J-Y, Andreini MS (1990) A numerical model of preferential solute movement in structured soils. Geoderma 46:199–208CrossRefGoogle Scholar
  118. Střelcová K, Matejka F, Minďáš J (2002) Estimation of beech tree transpiration in relation to their social status in forest stand. J Forest Sci 48:130–140Google Scholar
  119. Šály R (1986) Slope deposits and soil of the Western Carpathians. (In Slovak, with English abstract). Veda, BratislavaGoogle Scholar
  120. Torres R (2002) A treshold condition for soil-water transport. Hydrol Process 16:2703–2706CrossRefGoogle Scholar
  121. Valentini R (ed) (2003) Fluxes of carbon, water and energy of European forests, vol 163, Ecological studies. Springer, BerlinGoogle Scholar
  122. v. Wilpert K, Zirlewagen D, Kohler M (2000) To what extent can silviculture enhance sustainability of forest sites under the immission regime in Central Europe? Water Air Soil Poll 122:105–120CrossRefGoogle Scholar
  123. Walsh RD, Voigt PJ (1977) Vegetation litter: an underestimated variable in hydrology and geomorphology. J Biogeogr 4:253–274CrossRefGoogle Scholar
  124. Warrick AW (2003) Soil water dynamics. Oxford University Press, New YorkGoogle Scholar
  125. Weiler M, Flühler F (2004) Inferring flow types from dye patterns in macroporous soils. Geoderma 120:137–153CrossRefGoogle Scholar
  126. Weis W, Rotter V, Göttlein A (2006) Water and element fluxes during the regeneration of Norway spruce with European beech: effects of shelterwood-cut and clear-cut. Forest Ecol Manag 224:304–317CrossRefGoogle Scholar
  127. Wuyts K, De Schrijver A, Staelens J, Gielis L, Vandenbruwane J, Verheyen K (2008) Comparison of forest edge effects on throughfall deposition in different forest types. Environ Pollut 156:854–861PubMedCrossRefGoogle Scholar
  128. Ziegler F, Zech W (1989) Distribution pattern of total lipid fractions in forest humus. Z Pflanzenernaehr Bodenkd 152:287–290CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Viliam Novák
    • 1
  • Viliam Pichler
    • 2
  • Elisabeth Graf-Pannatier
    • 3
  • Edward P. Farrell
    • 4
  • Marián Homolák
    • 2
  1. 1.Department of Soil HydrologyInstitute of Hydrology, Slovak Academy of SciencesBratislava 3Slovak Republic
  2. 2.Department of Natural EnvironmentTechnical University in ZvolenZvolenSlovak Republic
  3. 3.Soil Sciences UnitEidg. Forschungsanstalt WSLBirmensdorfSwitzerland
  4. 4.Forest Ecosystem Research Group, Department of Environmental Resource ManagementUniversity College DublinDublinIreland

Personalised recommendations