Skip to main content

Tree Species’ Tolerance to Water Stress, Salinity and Fire

  • 1400 Accesses

Part of the Ecological Studies book series (ECOLSTUD,volume 212)

Abstract

According to climate change predictions, water availability might change dramatically in Europe and adjacent regions. This change will undoubtedly have an adverse effect on existing tree species and affect their ability to cope with a lack or an excess of water, changes in annual precipitation patterns, soil salinity and fire disturbance. The following chapter will describe tree species and provenances used in European forestry practice which are the most suitable to deal with water stress, salinity and fire. Each chapter starts with a brief description of each of the stress factors and discusses the predictions of the likelihood of their occurrence in the near future according to the climate change scenarios. Tree species and their genotypes able to cope with particular stress factor, together with indication of their use by forest managers are then introduced in greater detail.

Keywords

  • Tree Species
  • Salt Tolerance
  • Drought Tolerance
  • Soil Salinity
  • Forest Fire

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9834-4_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9834-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6

References

  • Armstrong W, Brandle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Botanica Neerl 43:307–358

    CAS  Google Scholar 

  • Barrett-Lennard EG (2002) Restoration of saline land through revegetation. Agric Water Manage 53:213–226

    CrossRef  Google Scholar 

  • Beritognolo I, Sabatti M, Brosché M et al (2008) Functional genomics to discover genes for salt tolerance in annual and perennial plants. In: Abdelly C, Öztürk M, Ashraf M et al (eds) Biosaline agriculture and high salinity tolerance. Birkhäuser Verlag, Switzerland

    Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, London

    CrossRef  Google Scholar 

  • Bond WJ, Midgley JJ (2003) The evolutionary ecology of sprouting in woody plants. Int J Plant Sci 164:S103–S114

    CrossRef  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    PubMed  CrossRef  Google Scholar 

  • Breda N, Badeau V (2008) Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance? CR Geosci 340:651–662

    CrossRef  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic ­capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus-vulgaris L) C3 non-halophytes. Plant Physiol 95:628–635

    PubMed  CrossRef  CAS  Google Scholar 

  • Buijse AD, Coops H, Staras M et al (2002) Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw Biol 47:889–907

    CrossRef  Google Scholar 

  • Cha-um S, Kirdmanee C (2008) Assessment of salt tolerance in eucalyptus, rain tree and thai neem under laboratory and the field conditions. Pak J Bot 40:2041–2051

    CAS  Google Scholar 

  • Chartzoulakis KS (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manage 78:108–121

    CrossRef  Google Scholar 

  • Chen SL, Lia JK, Fritz E et al (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecol Manag 168:217–230

    CrossRef  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon SD, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climatechange. Cambridge University Press, Cambridge, United Kingdom and New York, NY

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    PubMed  CrossRef  CAS  Google Scholar 

  • Climent J, Tapias R, Pardos JA et al (2004) Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecol 171:185–196

    CrossRef  Google Scholar 

  • Crawford RMM, Jeffree CE, Rees WG (2003) Paludification and forest retreat in Northern Oceanic Environments. Ann Bot 91:213–226

    PubMed  CrossRef  Google Scholar 

  • Dale G, Dieters M (2007) Economic returns from environmental problems: breeding salt- and drought-tolerant eucalypts for salinity abatement and commercial forestry. Ecol Eng 31:175–182

    CrossRef  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Ann Rev Plant Physiol Plant Mol Biol 48:223–250

    CrossRef  CAS  Google Scholar 

  • FAO (2000) The state of food and agriculture 2000: Lessons from the past 50 years. Agricultural and Developmental Economics Working Papers 32. UN FAO Economic and Social Development Department

    Google Scholar 

  • Ferrio JP, Florit A, Vega A et al (2003) Delta C-13 and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137:512–518

    PubMed  CrossRef  CAS  Google Scholar 

  • Gignoux J, Clobert J, Menaut JC (1997) Alternative fire resistance strategies in savanna trees. Oecologia 110:576–583

    CrossRef  Google Scholar 

  • Gilette HP (1950) A creeping drought under way. Water Sewage Works 97:104–105

    Google Scholar 

  • Glenn EP, Brown JJ (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10–16

    PubMed  CrossRef  CAS  Google Scholar 

  • Glenz C, Schlaepfer R, Iorgulescu I et al (2006) Flooding tolerance of Central European tree and shrub species. Forest Ecol Manag 235:1–13

    CrossRef  Google Scholar 

  • Imada S, Yamanaka N, Tamai S (2009) Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L. J Arid Environ 73:245–251

    CrossRef  Google Scholar 

  • James SR (1989) Hominid use of fire in the lower and middle pleistocene: a review of the evidence. Curr Anthropol 30:1–26

    CrossRef  Google Scholar 

  • Kont A, Jaagus J, Aunap R (2003) Climate change scenarios and the effect of sea-level rise for Estonia. Global Planet Change 36:1–15

    CrossRef  Google Scholar 

  • Kozlov MV, Niemelä P (2003) Drought is more stressful for northern populations of Scots pine than low summer temperatures. Silva Fenn 37:175–180

    Google Scholar 

  • Kozlowski TT (1997). Responses of woody plants to flooding and salinity. Tree Physiology Monographs 1

    Google Scholar 

  • Kreuzwieser J, Buchholz J, Rennenberg H (2003) Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biol 5:423–431

    CrossRef  CAS  Google Scholar 

  • Maximov NA, Yapp RH (1929) The plant in relation to water; a study of the physiological basis of drought resistance. G. Allen & Unwin Ltd., London

    Google Scholar 

  • Monteverdi CM, Lauteri M, Valentini R (2008) Biodiversity of plant species and adaptation to drought ans salt conditions. Selection of species for sustainable reforestation activity to combat desertification. In: Abdelly C, Öztürk M, Ashraf M et al (eds) Functional genomics to discover genes for salt tolerance in annual and perennial plants. Birkhäuser Verlag, Switzerland

    Google Scholar 

  • Mueller RC, Scudder CM, Porter ME et al (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093

    CrossRef  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF et al (1999) Fire effects on belowground sustainability:a review and synthesis. Forest Ecol Manag 122:51–71

    CrossRef  Google Scholar 

  • Nefabas LL, Gambiza J (2007) Fire-tolerance mechanisms of common woody plant species in a semiarid savanna in south-western Zimbabwe. Afr J Ecol 45:550–556

    CrossRef  Google Scholar 

  • Neuwirth B, Schweingruberb FH, Winigera M (2006) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89

    CrossRef  Google Scholar 

  • Nilsen ET, Orcutt DM, Hale MG (1996) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  • Ogaya R, Penuelas J (2007) Species-specific drought effects on flower and fruit production in a Mediterranean holm oak forest. Forestry 80:351–357

    CrossRef  Google Scholar 

  • Pausas JG, Blade C, Valdecantos A et al (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice – a review. Plant Ecol 171:209–220

    CrossRef  Google Scholar 

  • Pausas JG, Verdu M (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach. Oikos 109:196–202

    CrossRef  Google Scholar 

  • Pausas JG, Keeley JE, Verdu M (2006) Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere Mediterranean fire-prone ecosystems. J Ecol 94:31–39

    CrossRef  Google Scholar 

  • Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93

    CrossRef  Google Scholar 

  • Pennisi E (2008) Plant genetics: getting to the root of drought responses. Science 320:173–173

    PubMed  CrossRef  Google Scholar 

  • Pensa M, Aalto T, Jalkanen R (2004) Variation in needle-trace diameter in respect of needle ­morphology in five conifer species. Trees-Struct Funct 18:307–311

    CrossRef  Google Scholar 

  • Pensa M, Jalkanen R, Liblik V (2007) Variation in Scots pine needle longevity and nutrient ­conservation in different habitats and latitudes. Can J Forest Res-Revue Canadienne De Recherche Forestiere 37:1599–1604

    CrossRef  CAS  Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. Forest Ecol Manag 242:688–699

    CrossRef  Google Scholar 

  • Schume HG, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274

    CrossRef  Google Scholar 

  • Sellin A (2001) Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. Tree Physiol 21:879–888

    PubMed  CrossRef  CAS  Google Scholar 

  • Singh B (1998) Biomass production and nutrient dynamics in three clones of Populus deltoides planted on Indogangetic plains. Plant Soil 203:15–26

    CrossRef  CAS  Google Scholar 

  • Späth V (2002) Hochwassertoleranz von Waldba¨umen in der Rheinaue. AFZ Der Wald 15:807–810

    Google Scholar 

  • Tanji KK (2002) Salinity in the soil environment. In: Läuchli A, Lüttge U (eds) Salinity: ­environment-plant-molecules. Kluwer, Dordrecht

    Google Scholar 

  • Valladares F, Sanchez-Gomez D (2006) Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven ­species. Plant Biol 8:688–697

    PubMed  CrossRef  CAS  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    CrossRef  CAS  Google Scholar 

  • Vines RG (1968) Heat transfer through bark, and the resistance of trees to fire. Aust J Bot 16:499–514

    CrossRef  Google Scholar 

  • Wilhite DA, Buchanan-Smith M (2005) Drought as hazard: understanding the natural and social context. In: Wilhite DA (ed) Drought and water crises: science, technology, and management issues. CRC Press, Boca Raton, FL

    CrossRef  Google Scholar 

  • Wilson BG, Witkowski ETF (2003) Seed banks, bark thickness and change in age and size ­structure (1978–1999) of the African savanna tree, Burkea africana. Plant Ecol 167:151–162

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lukac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lukac, M., Pensa, M., Schiller, G. (2010). Tree Species’ Tolerance to Water Stress, Salinity and Fire. In: Bredemeier, M., Cohen, S., Godbold, D., Lode, E., Pichler, V., Schleppi, P. (eds) Forest Management and the Water Cycle. Ecological Studies, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9834-4_14

Download citation