Skip to main content

Changes in Forest Cover and its Diversity

Part of the Ecological Studies book series (ECOLSTUD,volume 212)

Abstract

Current forest cover of Europe differs not only from its past area or pattern, but also from Europe’s potential vegetation. This is a result of two main factors, i.e. climate changes and the anthropogenic influence. Both factors have affected tree species composition of forests, forest coverage, fragmentation, the structure of forest ecosystems, as well as their texture. Generally, they acted in opposite ways: while the easing of harsh climate after the last glaciation facilitated the re-colonisation of land by trees and further development of forest ecosystems, forest areas have been reduced and fragmented, and their structure and biodiversity diminished due to human activities. A reversal of the latter trend occurred during the last century in Europe, a process also called forest cover transition. It has been initiated and sustained by the decline of agriculture and population drift into urban areas. This trend has enabled both natural and artificial reforestation and/or afforestation, respectively. It is necessary to understand these changes because of their profound impact on both current forest management options and the water cycle. Various modes of impact may result from distinct ecophysiological responses of tress to the soil water content, interception and water channelling through forest canopies, coarse woody debris and surface humus layer, as well as structures and force fields created by tree roots and soil edaphone. Thus, projected scenarios of the development of European forests in the next decades imply multiple effects on the water cycle.

Keywords

  • Forest Management
  • Forest Cover
  • Coarse Woody Debris
  • European Beech
  • Tree Species Composition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9834-4_12
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9834-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5

References

  • Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy RJN, Giannakopoulos C, Martin E, Olesen JE, Shvidenko A (2007) Europe. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Bastian O, Bernhardt A (1993) Anthropogenic landscape changes in Central Europe and the role of bioindication. Lands Ecol 8:139–151

    CrossRef  Google Scholar 

  • Behre K-E (1988) The role of man in European vegetation history. In: Huntley B, Webb T (eds.) Vegetation History. Kluwer Academic Publishers, Dordrecht-Boston-London

    Google Scholar 

  • Bell S, Apostol D (2008) Designing sustainable forest landscapes. Taylor & Francis, London

    Google Scholar 

  • Bemmann A, Pretzsch J, Schulte A (2008) Baumplantagen weltweit – eine Übersicht. Schweiz Z Forstwes 159:124–132

    CrossRef  Google Scholar 

  • Binder R (1962) Settlers in the upper Hron Valley. (In Slovak). Stredoslovenské vyd. Banská Bystrica, Central Slovakia

    Google Scholar 

  • Bohn U, Gollub G, Hettwer C, Neuhäuslová Z, Raus T, Schlüter H, Weber H (2004) Map of the natural vegetation of Europe. Federal Agency for Nature Conservation, Bonn

    Google Scholar 

  • Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech –a review. Forestry 80:413–429

    CrossRef  Google Scholar 

  • Brang P (2005) Virgin Forests as a knowledge source for Central European silviculture: Reality or Myth? For Snow Landsc Res 79(1/2):19–31

    Google Scholar 

  • Bradshaw RHW (2004) Past anthropogenic influence on genetic structure and diversity within European forests. For Ecol Manag 197:203–212

    CrossRef  Google Scholar 

  • Bradshaw RHW, Holmqvist BH, Cowling SA, Sykes MT (2000) The effects of climate change on the distribution and management of Picea abies in southern Scandinavia. Can J Forest Res 30:1992–1998

    CrossRef  Google Scholar 

  • Bradshaw RHW, Mitchell FJG (1999) The palaeoecological approach to reconstructing former grazing-vegetation interactions. For Ecol Manag 120:3–12

    CrossRef  Google Scholar 

  • Bublinec E, Pichler V (eds) (2001) Slovak primeval forests – diversity and conservation. IFE SAS, Zvolen

    Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    PubMed  CrossRef  CAS  Google Scholar 

  • Coldea G (2003) The alpine flora and vegetation of the South-Eastern Carpathians. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine Biodiversity in Europe. Springer, Berlin

    Google Scholar 

  • Diaci J (2002) Regeneration dynamics in a Norway spruce plantation on silver fir-beech forest site in the Slovenian Alps. For Ecol Manag 161:27–38

    CrossRef  Google Scholar 

  • Dolman AJ, Moors EJ, Grunwald T, Berbigier P, Bernhofer C (2003) Factors controlling forest atmosphere exchange of water, energy, and carbon. In: Valentini R (ed) Fluxes of carbon water and energy of European forests. Springer-Verlag, New York

    Google Scholar 

  • Eucken W (1950) The Foundations of economics: History and theory in the analysis of economic reality. William Hodge, London

    Google Scholar 

  • FAO (2001) Global Forest Resources Assessment (2001) FAO forestry paper 140. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2005). Global Forest Resources Assessment (2005) FAO forestry paper 147. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2009) State of world’s forests. Food and Agriculture Organization, Rome

    Google Scholar 

  • Hetherington ED (1987) The importance of forests in the hydrological regime. In: Healy MC, Wallace RR (eds) Canadian aquatic resources. Department of Fisheries and Oceans, Ottawa, Ontario

    Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data’. Science 105:367–368

    PubMed  CrossRef  CAS  Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA (1971) Forest environments in tropical life zones: a pilot study. Pergamon Press, Oxford

    Google Scholar 

  • IUCN (2004) Evaluation of nominations of natural and mixed properties to the World Heritage List. Report to the World Heritage Committee 28th Session, June/July 2004 – Suzhou, China. WHC-WHC-04/28.COM/INF.14B

    Google Scholar 

  • Kankaanpää S, Carter TR (2004) An overview of forest policies affecting land use in Europe. Finnish Environment Institute, Helsinki

    Google Scholar 

  • Kauppi PE (1996) What is changing in the global environment? In: Korpilahti E, Mikkelä H, Salonen T (eds) Caring for the forest: research in a changing world. IUFRO Congress Report, Tampere, Finland

    Google Scholar 

  • Kenderes K, Mihók B, Standovár T (2008) Thirty years of gap dynamics in a central European beech forest reserve. Forestry 81:111–123

    CrossRef  Google Scholar 

  • Kimmins JP (1997) Forest ecology: a foundation for sustainable management, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Korpeľ Š (1989) Pralesy Slovenska (Primeval forests of Slovakia, in Slovak). Veda, Bratislava

    Google Scholar 

  • Korpeľ Š (1995) Die Urwälder der Westkarpaten. Fischer, Stuttgart/Jena

    Google Scholar 

  • Kozak J (2003) Forest cover changes in the Western Carpathians over the past 180 years: a case study from the Orawa region in Poland. Mt Res Dev 23:369–375

    CrossRef  Google Scholar 

  • Krippel E (1986) Postglaciálny vývoj vegetácie Slovenska (Postglacial development of vegetation in Slovakia, in Slovak). Veda, Bratislava

    Google Scholar 

  • Kutsch WL, Herbst M, Vanselow R, Hummelshøj P, Jensen NO, Kappen L (2001) Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany. Basic Appl Ecol 2:265–281

    CrossRef  Google Scholar 

  • Lang H, Bork HR, Mäckel N, Preston R, Wunderlich J, Dikau R (2003) Changes in sediment flux and storage within a fluvial system – some examples from the Rhine catchment. Hydrol Process 17:3321–3334

    CrossRef  Google Scholar 

  • Leibundgut H (1993) Europäische Urwälder. Haupt, Bern/Stuttgart

    Google Scholar 

  • Magri G, Vendramin G, Comps B, Dupanloup I, Geburek T, Gömöry D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 117:199–221

    CrossRef  Google Scholar 

  • Maracchi G, Sirotenko O, Bindi M (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim Change 70:117–135

    CrossRef  CAS  Google Scholar 

  • Mindas J, Skvarenina J (eds) (2003) Forests and global climate change (in Slovak, with English abstract). EFRA Zvolen/FRI Zvolen, Zvolen, Slovakia

    Google Scholar 

  • Nabuurs GJ, Päivinen R, Pussinen A, Schelhaas, MJ (2003) Development of European forests until 2050 – a projection of forests and forest management in thirty countries. EFI Research Report 15. European Forest Institute, Joensuu, Finland

    Google Scholar 

  • Nagel TA, Diaci J (2006) Intermediate wind disturbance in an old-growth beech-fir forest in Southeastern Slovenia. Can J For Res 36:629–638

    CrossRef  Google Scholar 

  • Parviainen J, Bücking W, Schuck A, Päivinen R (2000) Strict forest reserves in Europe: efforts to enhance biodiversity and research on forests left for free development in Europe (EU-COST-Action E4). Forestry 73:107–118

    CrossRef  Google Scholar 

  • Pichler V, Hamor F, Vološčuk I, Sukharyuk D (2007) Outstanding universal value of the ecological processes in the Primeval Beech Forests of the Carpathians and their management as World Heritage Sites. Acta Ecol, Veda, Bratislava

    Google Scholar 

  • Pitkänen A, Huttunen P, Jungner H, Merilainen J, Tolonen K (2003) Holocene fire history of middle boreal pine forest sites in eastern Finland. Ann Bot Fenn 40:15–33

    Google Scholar 

  • Plesník P (2004) Všeobecná biogeografia (General Biogeography, in Slovak). Comenius University, Bratislava

    Google Scholar 

  • Plesník P (1972) Obere Waldgrenze in den Gebirgen Europas von den Pyrenäen bis zum Kaukasus. In: Troll C (ed) Geoecology of the high-mountain regions of Eurasia. Franz Steiner Verlag, Wiesbaden

    Google Scholar 

  • Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biol Biochem 35:935–945

    CrossRef  CAS  Google Scholar 

  • Pretzsch H (2005) Diversity and productivity in forests: Evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner Ch, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems, vol 176, Ecol Stud. Springer Verlag, Berlin

    Google Scholar 

  • Rackham O (1990) Trees and woodland in the British landscape. Phoenix Press, London

    Google Scholar 

  • Risch AC, Heiri C, Bugmann H (2005) Simulating structural forest patterns with a forest gap model: a model evaluation. Ecol Model 181:161–172

    CrossRef  Google Scholar 

  • Raev I, Asan U, Grozev O (1997) Accumulation of CO2 in the above-ground biomass of the forests in Turkey and Bulgaria in the recent decades. XI World Forestry Congress, Turkey. pp. 131–138

    Google Scholar 

  • Röhle H, Böcker L, Feger K-H, Petzold R, Wolf H, Wael A (2008) Anlage und Ertragsaussichten von Kurzumtriebsplantagen in Ostdeutschland. Schweiz Z Forstwes 159:133–139

    CrossRef  Google Scholar 

  • Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Global Environ Change 15:23–31

    CrossRef  Google Scholar 

  • Schmidt P, Gerold D (2008) Kurzumtriebsplantagen – Ergänzung oder Widerspruch zur nachhaltigen Waldwirtschaft? Schweiz Z Forstwes 159:152–157

    CrossRef  Google Scholar 

  • Schuck A, Päivinen R, Häme T, Van Brusselen J, Kennedy P, Folving S (2003) Compilation of a European forest map from Portugal to the Ural mountains based on earth observation data and forest statistics. Forest Policy Econ 5:187–202

    CrossRef  Google Scholar 

  • Shiklomanov IA, Krestovsky OI (1988) The influence of forests and forest reclamation practice on streamflow and water balance. In: Reynolds ERC, Thompson FB (eds) Forests, climate, and hydrology: regional impacts. United Nations University, Tokyo

    Google Scholar 

  • Simpson M, Pichler V, Martin S, Brouwer R (2009) Integrating forest recreation and nature tourism into the rural economy. In: Bell S, Simpson M, Tyrväinen L, Sievänen T, Pröbstl U (eds) European Forest Recreation and Tourism. Taylor & Francis, London/New York

    Google Scholar 

  • Sims RE (1973) The anthropogenic factor in East Anglian vegetational history: an approach using APF techniques. In: Birds HJB, West RG (eds) Quaternary plant ecology. Blackwell Scientific Publications, London

    Google Scholar 

  • Sykes MT, Prentice IC (1995) Boreal forest futures: modelling the controls on tree species range limits and transient responses to climate change. Water Air Soil Poll 82:415–428

    CrossRef  CAS  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027

    CrossRef  Google Scholar 

  • Vera FWM (2000) Grazing ecology and forest history. CAB International, Oxford

    CrossRef  Google Scholar 

  • Vertessy RA, Watson FGR, O’Sullivan SK (2001) Factors determining relations between stand age and catchment water balance in mountain ash forests. Forest Ecol Manag 143:13–26

    CrossRef  Google Scholar 

  • Zweifel R, Steppe K, Sterck F-J (2007) Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. J Exp Bot 58:2113–2131

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

Parts of this work have been funded by the APVV project No. 0468/06 and VEGA 1/0723/08 related to FP0601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viliam Pichler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pichler, V., Godinho-Ferreira, P., Zlatanov, T., Pichlerová, M., Gregor, J. (2010). Changes in Forest Cover and its Diversity. In: Bredemeier, M., Cohen, S., Godbold, D., Lode, E., Pichler, V., Schleppi, P. (eds) Forest Management and the Water Cycle. Ecological Studies, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9834-4_12

Download citation