Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1863 Accesses

Abstract

Electronic sensor interfaces, developed in VM approach, generally use a conversion towards an output DC voltage signal, especially where the variations of the sensing element (resistance or capacitance) are relatively small (one to two decades). On the contrary, if the sensor variations are larger, i.e., three decades or more, a conversion towards an output periodic AC voltage signal is mandatory. In fact, in the latter case, the conversion to an output voltage is not advisable owing to the limitations given by the noise (for low output voltage levels) and by the supply voltage (for high output voltage levels). In this Chapter, different VM readout circuit solutions for resistive, capacitive and temperature sensors are described. These circuits have been also implemented as discrete element PCBs, using commercial components and sometimes, in the case of integrated circuit design, with LV LP characteristics, in a standard CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Ferri, V. Stornelli, Complementi di Microelettronica analogica (Aracne, Roma, 2006). ISBN 8854803200

    Google Scholar 

  2. A. D’Amico, C. Di Natale, G. Ferri, A ± 0. 6 V-supply CMOS topology to improve Wheatstone bridge performance, in Proceedings of AISEM (Associazione Italiana Sensori e Microsistemi) Conference, Roma, Feb 1999, pp. 403–407

    Google Scholar 

  3. A. Morgenshtein, L. Sudakov-Boreysha, U. Dinnar, C.G. Jakobson, Y. Nemirovsky, Wheatstone bridge readout interface for ISFET-REFET applications. Sensor. Actuat. B 98, 18–27 (2004)

    Article  Google Scholar 

  4. T. Sahm, L. Mädler, A. Gurlo, N. Barsan, U. Weimar, A. Roessler, S. E. Pratsinis, High performance porous metal oxide sensors via single step fabrication, in Proceedings of Eurosensors, Barcelona, Sept 2005

    Google Scholar 

  5. A. Fort, M. B. Serrano-Santos, R. Spinicci, N. Ulivieri, V. Vignoli, Electronic noses based on metal oxide gas sensors: the problem of selectivity enhancement, Proceedings of IMTC, Como, May 2004, pp. 599–604

    Google Scholar 

  6. H.T. Chueh, J.V. Hatfield, A real-time data acquisition system for a handheld electronic nose. Sensor. Actuat. B 83, 262–269 (2002)

    Article  Google Scholar 

  7. G. Sberveglieri, Recent developments in semiconducting thin-film gas sensors. Sensor. Actuat. B 23, 103–109 (1995)

    Article  Google Scholar 

  8. S. Capone, P. Siciliano, Gas sensors from nanostructured metal oxides. Encyclopedia Nanosci. Nanotechnol. 3, 769–804 (2004)

    Google Scholar 

  9. A. Flammini, D. Marioli, A. Taroni, A low-cost interface to high value resistive sensors varying over a wide range, in Proceedins of IEEE Instrumentation and Measurement Technology Conference, Veil, 2003, pp. 726–731

    Google Scholar 

  10. D. Barrettino, M. Graf, W.H. Song, K. Kirstein, A. Hierlemann, Hotplatebased monolithic CMOS microsystems for gas detection and material characterization for operating temperatures up to 500 ∘ C. IEEE J. Solid-St. Circ. 39, 1202–1207 (2004)

    Article  Google Scholar 

  11. M. Grassi, P. Malcovati, A. Baschirotto, A 0.1% accuracy \(100\Omega --20\mathrm{M}\Omega \) dynamic range integrated gas sensor interface circuit with 13 + 4 bit digital output, in Proceedings of IEEE European Solid-State Circuits, France, pp. 351–354, 2005

    Google Scholar 

  12. M. Grassi, P. Malcovati, A. Baschirotto, A high-precision wide-range front-end for resistive gas sensors arrays. Sensor. Actuat. B 111112, 281–285 (2005)

    Article  Google Scholar 

  13. P. Malcovati, M. Grassi, F. Borghetti,V. Ferragina, A. Baschirotto, Design and characterization of a 5-decade range integrated resistive gas sensor interface with 13-bit A/D converter, in Proceedings of IEEE International Conference on Sensors, Irvine, 2005, pp. 472–475

    Google Scholar 

  14. A. Baschirotto, S. Capone, A. De Marcellis, C. Di Natale, V. Ferragina, G. Ferri, L. Francioso, M. Grassi, N. C. Guerrini, P. Malcovati, E. Martinelli, P. Siciliano, V. Stornelli, A portable integrated wide-range gas sensing system with smart A/D front end, Proceedings of IMCS, Brescia, July 2006

    Google Scholar 

  15. A. Baschirotto, S. Capone, A. D’Amico, C. Di Natale, V. Ferragina, G. Ferri, L. Francioso, M. Grassi, N. Guerrini, P. Malcovati, E. Martinelli, P. Siciliano, A portable integrated wide-range gas sensing system with smart A/D front-end. Sensor. Actuat. B 130(1), 164–174 (2008)

    Article  Google Scholar 

  16. A. De Marcellis, G. Ferri, V. Stornelli, A. Depari, A. Flammini, D. Marioli, A novel op-amp based front-end for high valued resistive sensors, in Proceedings of AISEM (Associazione Italiana Sensori e Microsistemi) Conference, Roma, Feb 2008

    Google Scholar 

  17. A. Depari, A. Flammini, D. Marioli, E. Sisinni, E. Comini, A. Ponzoni, A 10 ms-readout interface for experimental resistive sensor characterization. Proc. ISOEN 1137, 220–223 (2009)

    Google Scholar 

  18. A. Depari, A. Flammini, D. Marioli, E. Sisinni, A fast-readout interface circuit for high-value and wide-range resistive chemical sensors, in Proceedings of IEEE I2MTC, 2010, pp. 116–120

    Google Scholar 

  19. A. Depari, A. Flammini, D. Marioli, E. Sisinni, A new interface circuit for high-value wide-range resistive chemical sensor dynamic characterization. Proc. Eurosensors 1(1), 1327–1330 (2009)

    Google Scholar 

  20. M. Grassi, P.Malcovati, A.Baschirotto, A high-precision wide-range front-end for resistive gas sensor arrays, in Proceedings of Eurosensors, Rome, Sept 2004

    Google Scholar 

  21. G. Ferri, N. Guerrini, V. Stornelli, C. Catalani, A novel CMOS Temperature Control system for resistive gas sensor array, Proceedings of ECCTD, Cork, 2005, pp. 351–354

    Google Scholar 

  22. G. Ferri, V. Stornelli, A. De Marcellis, A. Flammini, A. Depari, Novel CMOS fully integrated interface for wide-range resistive sensor arrays with parasitic capacitance estimation. Sensor. Actuat. B 130, 207–215 (2008)

    Article  Google Scholar 

  23. A. De Marcellis, A. Depari, G. Ferri, A. Flammini, D. Marioli, V. Stornelli, A. Taroni, Uncalibrated integrable wide-range single-supply portable interface for resistance and parasitic capacitance determination. Sensor. Actuat. B 132, 477–484 (2008)

    Article  Google Scholar 

  24. A. De Marcellis, A. Depari, G. Ferri, A. Flammini, D. Marioli, V. Stornelli, A. Taroni, A CMOS integrable oscillator-based front-end for high dynamic range resistive sensors. IEEE Trans. Instr. Meas. 57(8), 1596–1604 (2008)

    Article  Google Scholar 

  25. A. Flammini, D. Marioli, A. Taroni, A low-cost interface to high-value resistive sensors varying over a wide range. IEEE Trans. Instr. Meas. 53(4), 1052–1056 (2004)

    Article  Google Scholar 

  26. L. Fasoli, F. Riedijk, J. Huijsing, A general circuit for resistive bridge sensors with bitstream output. IEEE Trans. Instr. Meas. 46(4), 954–960 (1997)

    Article  Google Scholar 

  27. K. Mochizuki, K. Watanabe, A high-resolution, linear resistance-to-frequency converter. IEEE Trans. Instr. Meas 45, 761–764 (1996)

    Article  Google Scholar 

  28. S. Middlehoek, P.J. French, J.H. Huijsing, W. Lian, Sensors with digital or frequency output. Sensor. Actuat 15, 119–133 (1988)

    Article  Google Scholar 

  29. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, Sensing characteristics of NiO thin films as NO2 gas sensors. Thin Solid Films 418(1), 9–15 (2003)

    Article  Google Scholar 

  30. A. Martucci, M. Pasquale, M. Guglielmi, M. Post, J.C. Pivin, Nanostructured silicon oxide nickel oxide sol–gel films with enhanced optical carbon monoxide gas sensitivity. J. Am. Ceram. Soc. 86(9), 1638–1640 (2003)

    Article  Google Scholar 

  31. G. Sberveglieri, E. Comini, G. Faglia, M.T. Atashbar, W. Wlodarski, Titanium dioxide thin films prepared for alcohol microsensor Applications. Sensor. Actuat. B 66, 139–141 (2000)

    Article  Google Scholar 

  32. S. Bianchi, E. Comini, M. Ferroni, G. Faglia, G. Sberveglieri, Metal oxide nanowires for optical gas sensing, in Proceedings of Eurosensors, Barcellona, Sept 2005

    Google Scholar 

  33. T. Sahm, L. Madler, A. Gurlo, N. Barsan, U. Weimar, A. Roessler, S. E. Pratsinis, Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt ∕ SnO2 nanoparticles, Proceedings of Eurosensors, Barcellona, Sept 2005

    Google Scholar 

  34. G. Neri, A. Bonavita, G. Rizzo, C. Baratto, G. Faglia, G. Sberveglieri, Towards enhanced performances in gas sensing: nanocrystalline oxides application, in Proceedings of Eurosensors, Barcellona, Sept 2005

    Google Scholar 

  35. E. Comini, M. Ferroni, V. Guidi, P. G. Merli, V. Morandi, G. Sberveglieri, Low temperature CO detection by goldactivated nanosized titania, in Proceedings of Eurosensors, Barcellona, Sept 2005

    Google Scholar 

  36. A. Fort, S. Rocchi, M. Serrano-Santos, R. Spinicci, N. Ulivieri, V. Vignoli, A high-performance measurement system for simultaneous mass and resistance variation measurements on gas sensing polymer films, Proceedings of IMTC, 2004, pp. 599–604

    Google Scholar 

  37. I. Sayago, M.C. Horrillo, S. Baluk, M. Aleixandre, M.J. Fernandez, L. Ares, M. Garcia, J.P. Santos, J. Gutierrez, Detection of toxic gases by a tin oxide multisensor. IEEE Sens. J. 2(5), 387–393 (2002)

    Article  Google Scholar 

  38. A. Depari, M. Falasconi, A. Flammini, D. Marioli, S. Rosa, G. Sberveglieri, A. Taroni, A new hardware approach to realize low-cost electronic noses, Proceedings of IEEE Sensors, Irvine, 2005, pp.239–242

    Google Scholar 

  39. G. Ferri, V. Stornelli, W. Cappucci, C. Cantalini, Integrated CMOS interfaces for wide-range resistive gas sensors. Sensor. Actuat. B B118(2), 269–275 (2006)

    Article  Google Scholar 

  40. S.S.W. Chan, P.C.H. Chan, A resistance-variation tolerant constant-power heating circuit for integrated sensor applications. IEEE J. Solid-St. Circ. 34(4), 432–437 (1999)

    Article  Google Scholar 

  41. G. Ferri, V. Stornelli, A. De Marcellis, A. Flammini, V. Depari, Novel CMOS integrable wide-range resistive sensor interface, Proceedings of IMCS, Brescia, July 2006

    Google Scholar 

  42. A. Depari, A. Flammini, D. Marioli, S. Rosa, A. Taroni, A low-cost circuit for high-value resistive sensors varying over a wide range. IOP Measur. Scien. Tech. 17(2), 353–358 (2006)

    Article  Google Scholar 

  43. A. Sedra, K.C. Smith, Microelectronic Circuits, 5th edn. (Oxford University Press, New York, 2007). ISBN 0195142527

    Google Scholar 

  44. A. Depari, A. Flammini, D. Marioli, A. Taroni, A. De Marcellis, G. Ferri, V. Stornelli, A new CMOS integrable oscillating circuit for high-value wide-range resistive sensors, in Proceedings of IMTC, Varsavia, May 2007, pp. 1–4

    Google Scholar 

  45. A. Depari, A. Flammini, D. Marioli, A. Taroni, A. De Marcellis, G. Ferri, V. Stornelli, An uncalibrated wide-range single-supply integrable front-end for resistance and capacitance estimation, in Proceedings of Transducers and Eurosensors, Lyon, June 2007, pp. 2031–2034

    Google Scholar 

  46. W. Sansen, Analog Design Essentials (Springer, Dordrecht, 2006). ISBN 0387257462

    Google Scholar 

  47. F. Maloberti, Analog Design For CMOS VLSI Systems (Kluwer Academic Publishers, Dordrecht, 2001). ISBN 1441949194

    Google Scholar 

  48. C. Di Carlo, A. De Marcellis, V. Stornelli, G. Ferri, A. Flammini, A. Depari, Integrated CMOS resistance-to-period converter with parasitic capacitance evaluation, Proceedings of IEEE ISCAS, Taipei, May 2009

    Google Scholar 

  49. G. Ferri, C. Di Carlo, V. Stornelli, A. De Marcellis, A. Flammini, A. Depari, N. Jand, A single chip integrated interfacing circuit for wide-range resistive gas sensor arrays. Sensor. Actuat. B B 143, n. 1, 218–225 (2009)

    Google Scholar 

  50. Internet resource: http://www.figarosensor.com, datasheet TGS2600

  51. A. De Marcellis, G. Ferri, V. Stornelli, An oscillator topology as wide range resistive-capacitive sensor interface, in Proceedings of AISEM (Associazione Italiana Sensori e Microsistemi) Conference, Rome, 2008

    Google Scholar 

  52. A. Depari, A. Flammini, D. Marioli, E. Sisinni, A. De Marcellis, G. Ferri, V. Stornelli, A new interface for resistive chemical sensors with low measuring time, in Proceedings of IEEE IMTC, Singapore, May 2009

    Google Scholar 

  53. A. Depari, A. Flammini, D. Marioli, E. Sisinni, A. De Marcellis, G. Ferri, V. Stornelli, A new, fast readout, interface for high-value resistive chemical sensors, in Proceedings of ISOEN, Brescia, April 2009

    Google Scholar 

  54. A. Depari, A. Flammini, D. Marioli, E. Sisinni, A. De Marcellis, G. Ferri, V. Stornelli, A new and fast-readout interface for resistive chemical sensors. IEEE Trans. Instrum. Meas. 59(5), 1276–1283 (2010)

    Article  Google Scholar 

  55. C.T. Chiang, C.S. Wang, Y.C. Huang, A monolithic CMOS autocompensated sensor transducer for capacitive measuring systems. IEEE T. Instrum. Meas. 57(11), 2472–2486 (2008)

    Article  Google Scholar 

  56. Internet resource: http://www.analog.com, datasheet ADXL50

  57. G. Ferri, P. De Laurentiis, A novel low voltage low power oscillator as a capacitive sensor interface for portable applications. Sensor. Actuat. A 76, 437–441 (1999)

    Article  Google Scholar 

  58. N. Yadzi, A. Mason, K. Najafi, K.D. Wise, A generic chip interace for capacitive sensors in low power multiparameter microsystems. Sensor. Actuat. A 84, 351–361 (2000)

    Article  Google Scholar 

  59. G. Amendola, G.N. Lu, I. Badadjian, Signal processing electronics for a capacitive microsensor. Analog. Integr. Circ. S. 29(1–2), 105–120 (2001)

    Article  Google Scholar 

  60. S. Chatzandrolis, D. Tsoukalas, Capacitance to frequency converter suitable for sensor applications using telemetry. Analog. Integr. Circ. S. 27(1–2), 31–38 (2001)

    Article  Google Scholar 

  61. K. Watanabe, H. Matsumote, K. Fujiwara, Switched-capacitor frequency-to-voltage and voltage-to-frequency converters. IEEE Trans. Circ. Syst. CAS-33, n. 8, 836–838 (1986)

    Google Scholar 

  62. H. Matsumoto, K. Watanabe, Switched-capacitor frequency-to-voltage and voltage-to-frequency converters based on charge balancing principle, in Proceedings of IEEE International Symposium on Circuits and System, 1988, pp. 2221–2224

    Google Scholar 

  63. D. Yin, Z. Zhang, J. Li, A simple switched-capacitor-based capacitance-to-frequency converter. Analog. Integr. Circ. S. 1(4), 353–361 (1991)

    Google Scholar 

  64. F. Krummenacher, A high-resolution capacitance-to-frequency converter. IEEE J. Solid-St. Circ. SSC-20, n. 3, 666–670 (1985)

    Google Scholar 

  65. M. Suster, W.H. Ko, D.J. Young, An optically powered wireless telemetry module for high-temperature MEMS sensing and communication. J. Microelectromech. S. 13(3), 536–541 (2004)

    Article  Google Scholar 

  66. T.G. Constandinou, J. Georgiou, C. Toumazou, Micropower front-end interface for differential capacitive sensor systems. IET Electron. Lett. 44(7), 470–472 (2008)

    Article  Google Scholar 

  67. A. D’Amico, C. Di Natale, Introduzione ai sensori (Aracne, Roma, 2008). ISBN 9788854816633

    Google Scholar 

  68. Internet resource: http://www.sensorsmag.com/sensors/humidity-moisture/choosing-a-humi-dity-sensor-a-review-three-technologies-840

  69. Internet resource: http://www.analog.com, datasheet AD590

  70. Internet resource: http://www.national.com, datasheet LM35

  71. G. Ferri, V. Stornelli, A high precision temperature control system for CMOS integrated wide range resistive gas sensors. Analog. Integr. Circ. S. 47(3), 293–301 (2006)

    Article  Google Scholar 

  72. G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 1(3), 225–234 (2001)

    Article  Google Scholar 

  73. G. Wang, G.C.M. Meijer, The temperature characteristics of bipolar transistors fabricated in CMOS technology. Sensor. Actuat. A 87, 81–89 (2000)

    Article  Google Scholar 

  74. J. Sun, C.Y. Yeong, H.H. Wang, A low voltage CMOS current source with temperature compensation, in Proceedings of IEEE SSMSD, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Marcellis .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Marcellis, A., Ferri, G. (2011). The Voltage-Mode Approach in Sensor Interfaces Design. In: Analog Circuits and Systems for Voltage-Mode and Current-Mode Sensor Interfacing Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9828-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9828-3_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9827-6

  • Online ISBN: 978-90-481-9828-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics