Physical and Chemical Sensors

Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In this chapter we give an introduction and classification on some examples of physical sensors (devices placed at the input of an instrumentation system that quantitatively measures a physical parameter, for example pressure, displacement or temperature) and chemical sensors (devices which are part of an instrumentation system that determines, typically, the concentration of a chemical substance, such as a toxic gas or oxygen), describing their working principles and main characteristic parameters.

Keywords

Humidity Sensor Pyroelectric Effect Nernst Potential Biomedical Sensor Hall Effect Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Gopel, J. Hesse, J.H. Zemel (eds.), Fundamentals and General Aspects, Sensors: A Comprehensive Survey (Wiley VCH, Germany, 1996). ISBN 3527293299Google Scholar
  2. 2.
    S. Middelhock, S.A. Audet, P. French, Silicon Sensors (Academic, London, 2000)Google Scholar
  3. 3.
    S.D. Senturia, Microsystem Design (Kluwer, Boston, 2001). ISBN 9780792372462Google Scholar
  4. 4.
    R. Pall’as-Areny, J.G. Webster, Sensors and Signal Conditioning, 2nd edn. (Wiley Interscience, New York, 2001). ISBN 0471332321Google Scholar
  5. 5.
    J. Fraden, Handbook of Modern Sensors: Physics, Design and Applications, 3rd edn. (Springer, New York, 2003). ISBN 1441964657Google Scholar
  6. 6.
    S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2007). ISBN 9780471143239Google Scholar
  7. 7.
    A. D’Amico, C. Di Natale, Introduzione ai sensori (Aracne, Roma, 2008). ISBN 9788854816633Google Scholar
  8. 8.
    A. DAmico, C. Di Natale, A contribution on some basic definitions of sensors properties. IEEE Sensors J. 1(3), 183–190 (2001)Google Scholar
  9. 9.
    R.C. Dorf, The Electrical Engineering Handbook (CRC Press LLC, Boca Raton, 2000). ISBN 0849385741Google Scholar
  10. 10.
    G. Ferri, N.C. Guerrini, Low-Voltage Low-Power CMOS Integrated Architectures for Sensor Interfaces, Electronics World, Nov 2002, Vol. 108, pp. 12–20Google Scholar
  11. 11.
    L. Zhao, E.M. Yeatman, Inherently digital micro capacitive tilt sensor for low power motion detection, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 621–624Google Scholar
  12. 12.
    Y.H. Hsueh, J.H. Lin, Low power integrated capacitive pressure microsensor design, in Proceedings of Eurosensors 2008, Dresden, Sept 2008, pp. 284–287Google Scholar
  13. 13.
    C. Hierold, B. Clasbrummel, D. Behrend, T. Scheiter, M. Steger, K. Oppermann, H. Kapels, E. Landgraf, D. Wenzel, D. Etzrodt, Low power integrated pressure sensor system for medical applications. Sensor Actuat A 73(1–2), 58–67 (1999)CrossRefGoogle Scholar
  14. 14.
    L. Löfgren, B. Löfving, T. Pettersson, B. Ottosson, S. Haasl, C. Rusu, K. Persson, O. Vermesan, N. Pesonen, P. Enoksson, Low-power humidity sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 231–234Google Scholar
  15. 15.
    C. Falconi, E. Martinelli, C. Di Natale, A. DAmico, F. Maloberti, P. Malcovati, A. Baschirotto, V. Stornelli, G. Ferri, Electronic Interfaces. Sensor Actuat B 121, 295–329 (2007)Google Scholar
  16. 16.
    J. Huijsing, Integrated smart sensors. Sensor Actuat A 30, 167–174 (1992)CrossRefGoogle Scholar
  17. 17.
    M. Landwehr, H. Grätz, A low-power, low-area, delay-line based CMOS temperature sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1392–1394Google Scholar
  18. 18.
    T.G. Constandinou, J. Georgiou, C. Toumazou, Micropower front-end interface for differential capacitive sensor systems. IET Electron. Lett. 44(7), 470–472 (2008)CrossRefGoogle Scholar
  19. 19.
    S.S.W. Chan, P.C.H. Chan, A resistance-variation tolerant constant-power heating circuit for integrated sensor applications. IEEE J. Solid-St. Circ. 34(4), 432–437 (1999)CrossRefGoogle Scholar
  20. 20.
    M. Grassi, P. Malcovati, A.Baschirotto, A high-precision wide-range front-end for resistive gas sensor arrays, in Proceedings of Eurosensors, Rome, Sept 2004Google Scholar
  21. 21.
    G. Ferri, N. Guerrrini, V. Stornelli, C. Catalani, A novel CMOS temperature control system for resistive gas sensor array, Proceedings of ECCTD, Cork, 2005, pp. 351–354Google Scholar
  22. 22.
    A. Gerosa, A. Maniero, A. Neviani, A fully integrated two-channel A/D interface for the acquisition of cardiac signals in implantable pacemakers. IEEE J. Solid-St. Circ. 39(7), 1083–1093 (2004)CrossRefGoogle Scholar
  23. 23.
    S. Pennisi, High-performance and simple CMOS interface circuit for differential capacitive sensors. IEEE T. Circuits II 52(6), 322–326 (2005)Google Scholar
  24. 24.
    J.R. Kaienburg, M. Huonker, R. Schellin, Surface micromachined bridge configurations for accurate angle measurements, in IEEE Internationl Conference on Microelectromechanical Systems, Miyazaki, Jan 2000, pp. 120–125Google Scholar
  25. 25.
    M. Cicioni, L. Bissi, P. Placidi, A. Shehu, A. Scorzoni, E. Cozzani, I. Elmi, S. Zampolli, G.C. Cardinali, Interface circuit for an ultra low power gas sensor, in IEEE Instrumentation and Measurement Technology Conference, Singapore, May 2009, pp. 254–258Google Scholar
  26. 26.
    L. Bissi, M. Cicioni, P. Placidi, S. Zampolli, I. Elmi, A. Scorzoni, A programmable interface circuit for an ultralow power gas sensor. IEEE T. Instrum. Meas. 99, 1–8 (2010)Google Scholar
  27. 27.
    H. Baltes, A. Häberli, P. Malcovati, F. Maloberti, Smart sensor interfaces DOI: dx.doi.org. Proc. IEEE Int. Symp. Circ. Syst. 4, 380–383 (2006). AtlantaGoogle Scholar
  28. 28.
    M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a 3s inaccuracy of ± 0.1 ∘ C from − 55 ∘ C to 125 ∘ C. IEEE J. Solid-St. Circ. 40(12), 2805–2815 (2005)Google Scholar
  29. 29.
    M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa, J.H. Huijsing, Voltage calibration of smart temperature sensors, Proc. of IEEE Sensors, Lecce, Oct 2008, pp. 756–759Google Scholar
  30. 30.
    M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate pnp transistors. IEEE Sens. J. 4(3), 294–300 (2004)CrossRefGoogle Scholar
  31. 31.
    M. Malfatti, M. Peronzoni, N. Viarani, A. Simoni, L. Lorenzelli, A. Baschirotto, A complete front-end system read-out and temperature control for resistive gas sensor array. IEEE Eur. Conf. Circ. Theor. Des. 3, 31–34 (2005)Google Scholar
  32. 32.
    H. Baltes, CMOS as sensor technology. Sensor Actuat A 3738, 51–56 (1993)CrossRefGoogle Scholar
  33. 33.
    H. Baltes, D. Moser, E. Lenggenhager, O. Brand, D. Jaeggi, Thermomechanical microtransducers by CMOS and micromachining micromechanical sensors, in Actuators and Systems, DSC-32, (ASME, New York, 1991), pp. 61–75Google Scholar
  34. 34.
    H. Baltes, O. Brand, CMOS-based microsensors and packaging. Sensor Actuat A 92(1–3), 1–9 (2001)CrossRefGoogle Scholar
  35. 35.
    A. Baschirotto, P. Malcovati, Technology-driven alternatives for smart sensor interfaces, in Sensors Update, ed. by H. Baltes, G. Fedder, J. Korvink (Wiley-VCH, Weinhein, 2003), Vol. 13, pp. 45–81Google Scholar
  36. 36.
    G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 1(3), 225–234 (2001)CrossRefGoogle Scholar
  37. 37.
    C. Falconi, J. Huijsing, Curvature correction of bandgap references for low cost integrated sensors systems, in Proceedings of Eurosensors, Prague, 2003Google Scholar
  38. 38.
    G. Wang, G.C.M. Meijer, The temperature characteristics of bipolar transistors fabricated in CMOS technology. Sensor Actuat A 87, 81–89 (2000)CrossRefGoogle Scholar
  39. 39.
    C. Zhang, T. Yin, Q. Wu, H. Yang, A large dynamic range CMOS readout circuit for MEMS vibratory gyroscope, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 1123–1126Google Scholar
  40. 40.
    W.L. Liu, S.J. Chen, C.H. Shen, Sensitivity improvement of thermal conduction CMOS based accelerometer, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 407–410Google Scholar
  41. 41.
    C. Liang Dai, M. Chen Liu, Nanoparticle SnO2 gas sensor with circuit and microheater on chip fabricated using CMOS-MEMS technique, in IEEE Nano-Micro Engineered and Molecular Systems and Conference, Thailand, 2007, pp. 959–963Google Scholar
  42. 42.
    C.T. Ko, S.H. Tseng, M.S.C. Lu, A CMOS micromachined capacitive tactile sensor with high frequency output. IEEE J. Microelectromech Syst. 15(6), 1708–1714 (2006)CrossRefGoogle Scholar
  43. 43.
    S.H. Tseng, P.C. Wu, Y.Z. Juang, M.S.C. Lu, A CMOS MEMS thermal sensor with high frequency output, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 387–390Google Scholar
  44. 44.
    C.L. Dai, Y.W. Tai, P.H. Kao, Modeling and fabrication of micro FET pressure sensor with circuits. Sensors 7, 3386–3398 (2007)CrossRefGoogle Scholar
  45. 45.
    G.M. Lazzerini, M. Dei, P. Bruschi, M. Piotto, VHDL-AMS modeling of an integrated gas flow sensor readout channel with pressure compensation, in Proceedings of PRIME 2007, Bordeaux, 2007, pp. 141–144Google Scholar
  46. 46.
    A. Lombardi, M. Grassi, L. Bruno, P. Malcovati, A. Baschirotto, A fully integrated interface circuit for 1. 5 ∘ C accuracy temperature control and 130-dB dynamic-range read-out of MOX gas sensors, in 34th European Solid-State Circuits Conference, Sept 2008, pp. 78–81Google Scholar
  47. 47.
    A. Lombardi, L. Bruno, M. Grassi, P. Malcovati, S. Capone, L. Francioso, P. Siciliano, A. Baschirotto, Integrated read-out and temperature control interface with digital I/O for a gas-sensing system based on a SnO2 microhotplate thin film gas sensor, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 596–599Google Scholar
  48. 48.
    M. Piotto, M. Dei, P. Bruschi, An interface circuit for thermal gas flow meters with compensation of pressure effects, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 433–436Google Scholar
  49. 49.
    M. Grassi, P. Malcovati, A. Baschirotto, A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid-St. Circ. 42, 1543–1554 (2007)CrossRefGoogle Scholar
  50. 50.
  51. 51.
  52. 52.
    D.F. Da Silva, D. Acosta-Avalos, Light dependent resistance as a sensor in spectroscopy setups using pulsed light and compared with electret microphones. Sensors 6, 514–525 (2006)CrossRefGoogle Scholar
  53. 53.
    X. Qiu, Patterned piezo-, pyro- and ferroelectricity of poled polymer electrets. J. Appl. Phys. 108(1), 011101-011101–19 (2010)Google Scholar
  54. 54.
    S. Kon, K. Oldham, R. Horowitz, Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection, in Proceedings of SPIE, part 2, N. 65292V, 2007Google Scholar
  55. 55.
    M. Pohanka, O. Pavliš, P. Skládal, Rapid characterization of monoclonal antibodies using the piezoelectric immunosensor. Sensors 7, 341–353 (2007)CrossRefGoogle Scholar
  56. 56.
    M. Stobiecka, J.M. Cieśla, B. Janowska, B. Tudek, H. Radecka, Piezoelectric sensor for determination of genetically modified Soybean Roundup Ready in samples not amplified by PCR. Sensors 7, 1462–1479 (2007)CrossRefGoogle Scholar
  57. 57.
    M. Pohanka, F. Treml, M. Hubálek, H. Band’ouchová, M. Beklová, J. Pikula, Piezoelectric biosensor for a simple serological diagnosis of tularemia in infected European Brown Hares. Sensors 7, 2825–2834 (2007)Google Scholar
  58. 58.
    S. Noimanee, T. Tunkasiri, K. Siriwitayakorn, J. Tantrakoon, Design considerations for aural vital signs using PZT piezoelectric ceramics sensor based on the computerization method. Sensors 7, 3192–3208 (2007)CrossRefGoogle Scholar
  59. 59.
    D. Ortega, J.S. Garitaonandia, C. Barrera-Solano, M. Domínguez, Ferromagnetic resonance of nanocomposites based on iron oxides. Sensor Lett. 5, 69–72 (2007)CrossRefGoogle Scholar
  60. 60.
    V.A. Chernenko, S. Besseghini, P. Müllner, G. Kostorz, J. Schreuer, M. Krupa, Ferromagnetic shape memory materials: Underlying physics and practical importance. Sensor Lett. 5, 229–233 (2007)CrossRefGoogle Scholar
  61. 61.
    A. Platil, J. Tomek, P. Kaspar, Characterization of ferromagnetic powders for magnetopneumography and other applications. Sensor Lett. 5, 311–314 (2007)CrossRefGoogle Scholar
  62. 62.
    J. Guyonnet, H. Bea, P. Paruch, Lateral piezoelectric response across ferroelectric domain walls in thin films. J. Appl. Phys. 108(4), 042002-042002–11 (2010)Google Scholar
  63. 63.
    K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Optimal configuration of microstructure in ferroelectric materials by stochastic optimization. J. Appl. Phys. 108(2), 024101–10 (2010)CrossRefGoogle Scholar
  64. 64.
    G.A. Salvatore, L. Lattanzio, D. Bouvet, I. Stolichnov, N. Setter, A.M. Ionescu, Ferroelectric transistors with improved characteristics at high temperature. Appl. Phys. Lett. 97(5), 053503-053503–3 (2010)Google Scholar
  65. 65.
    SB. Lang, J.C. Lashley, K.A. Modic, R.A. Fisher, W.M. Zhu, Z.G. Ye, Specific heat of a ferroelectric PZT ceramic at the morphotropic phase boundary, in 15th IEEE Mediterranean Electrotechnical Conference, Valletta, April 2010, pp. 23–25Google Scholar
  66. 66.
    X.W. Dong, S. Dong, K.F. Wang, J.G. Wan, J.M. Liu, Enhancement of ferroelectricity in Cr-doped HO2Ti2O7. Appl. Phys. Lett. 96(24), 242904-242904–3 (2010)Google Scholar
  67. 67.
    A. Cano, D. Jimenez, Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97(13), 133509-133509–3 (2010)Google Scholar
  68. 68.
    W.L. Lew, J.A. Ole Farmer, M.C. Crowe, C.T. Campbell, Improved pyroelectric detectors for single crystal adsorption calorimetry from 100 to 350 K. Rev. Sci. Instrum. 81(2), 024102-024102–9 (2010)Google Scholar
  69. 69.
    M. Schossig, V. Norkus, G. Gerlach, Infrared responsivity of pyroelectric detectors with nanostructured NiCr thin-film absorber. IEEE Sens. J. 10(10), 1564–1565 (2010)CrossRefGoogle Scholar
  70. 70.
    P. Zappi, E. Farella, L. Benini, Tracking motion direction and distance with pyroelectric IR sensors. IEEE Sens. J. 10(9), 1486–1494 (2010)CrossRefGoogle Scholar
  71. 71.
    Q. Hao, F. Hu, Y. Xiao, Multiple human tracking and identification with wireless distributed pyroelectric sensor systems. IEEE Syst. J. 3(4), 428–439 (2009)CrossRefGoogle Scholar
  72. 72.
    W. Tornow, S.M. Lynam, S.M. Shafroth, Substantial increase in acceleration potential of pyroelectric crystals. J. Appl. Phys. 107(6), 063302-063302–4 (2010)Google Scholar
  73. 73.
    J. Wooldridge, J.F. Blackburn, N.L. McCartney, M. Stewart, P. Weaver, M.G. Cain, Small-scale piezoelectric devices: Pyroelectric contributions to the piezoelectric response. J. Appl. Phys. 107(10), 10118-104118–6 (2010)Google Scholar
  74. 74.
    A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, S.V. Kalinin, Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting. J. Appl. Phys. 108(4), 042009-042009–6 (2010)Google Scholar
  75. 75.
    J. Zhang, M.W. Cole, S.P. Alpay, Pyroelectric properties of barium strontium titanate films: Effect of thermal stresses. J. Appl. Phys. 108(5), 054103-054103–7 (2010)Google Scholar
  76. 76.
    S. Gundogdu, O. Sahin, E.M.I. effects of cathodic protection on electromagnetic flowmeters. Sensors 7, 75–83 (2007)Google Scholar
  77. 77.
    C. Israel, S. Kar-Narayan, N.D. Mathur, Eliminating the temperature dependence of the response of magnetoelectric magnetic-field sensors. IEEE Sens. J. 10(5), 914–917 (2010)CrossRefGoogle Scholar
  78. 78.
    J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials. Synthesis, properties and applications. Mater. Sci. Eng. 52, 49–91 (2006)Google Scholar
  79. 79.
    I. Sayago, M.C. Horrillo, S. Baluk, M. Aleixandre, M.J. Fernandez, L. Ares, M. Garcia, J.P. Santos, J. Gutierrez, Detection of toxic gases by a tin oxide multisensor. IEEE Sens. J. 2, 387–393 (2002)CrossRefGoogle Scholar
  80. 80.
    T. Sahm, L. Mädler, A. Gurlo, N. Barsan, U. Weimar, A. Roessler, S. E. Pratsinis, High performance porous metal oxide sensors via single step fabrication, in Proceedings of Eurosensors, Barcelona, Sept 2005Google Scholar
  81. 81.
    A. Depari, G. Faglia, A. Flammini, A. Fort, M. Mugnaini, A. Ponzoni, E. Sisinni, S. Rocchi, V. Vignoli, CO detection by MOX sensors exploiting their dynamic behavior, in Proceedings of Eurosensors, Dresden, Oct 2008, pp. 1070–1073Google Scholar
  82. 82.
    A. Fort, M. B. Serrano-Santos, R. Spinicci, N. Ulivieri, V. Vignoli, Electronic noses based on metal oxide gas sensors: the problem of selectivity enhancement, Proceedings of IEEE Instrumentation and Measurement Technology Conference - IMTC 2004, Como, May 2004, pp. 599–604Google Scholar
  83. 83.
    G. Sberveglieri, E. Comini, G. Faglia, M.Z. Atashbar, W. Wlodarski, Titanium dioxide thin films prepared for alcohol microsensor applications. Sensor Actuat B 66(1–3), 139–141 (2000)CrossRefGoogle Scholar
  84. 84.
    A. Delan, A. Karuppasamy, E. Schultheiß, Gas sensing properties of pure and doped (n, c) TiO2 thin films grown by pulsed DC magnetron sputtering, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 844–847Google Scholar
  85. 85.
    S.V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A.P. Baddorf, Y. Lilach, M. Moskovits, A. Kolmakov, Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J. Appl. Phys. 98, 044503–8 (2005)CrossRefGoogle Scholar
  86. 86.
    Y.X. Chen, L.J. Campbell, W.L. Zhou, Self-catalytic branch growth of SnO2 nanowire junctions. J. Cryst. Growth 270, 505–510 (2004)CrossRefGoogle Scholar
  87. 87.
    D. Calestani, M. Zha, G. Salviati, L. Lazzarini, L. Zanotti, E. Comini, G. Sberveglieri, Nucleation and growth of SnO2 nanowires. J. Cryst. Growth 275, 2083–2087 (2005)CrossRefGoogle Scholar
  88. 88.
    M.R. Yang, S.Y. Chu, R.C. Chang, Synthesis and study of the SnO2 nanowires growth. Sensor Actuat B 122, 269–273 (2007)CrossRefGoogle Scholar
  89. 89.
    J.K. Jian, X.L. Chen, W.J. Wang, L. Dai, Y.P. Xu, Growth and morphologies of large-scale SnO2 nanowires, nanobelts and nanodendrites. Appl. Phys. 76, 291–294 (2003)CrossRefGoogle Scholar
  90. 90.
    D.F. Zhang, L.D. Sun, G. Xu, C.H. Yan, Sizecontrollable one-dimensional SnO2 nanocrystals: Synthesis, growth mechanism and gas sensing property. Phys. Chem. Chem. Phys. 8, 4874–4880 (2006)CrossRefGoogle Scholar
  91. 91.
    Y.J. Chen, X.Y. Xue, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl. Phys. Lett. 87, 233503–3 (2005)CrossRefGoogle Scholar
  92. 92.
    S. Kumar, S. Rajaraman, R.A. Gerhardt, Z.L. Wang, P.J. Hesketh, Tin oxide nanosensor fabrication using AC dielectrophoretic manipulation of nanobelts. Electrochim. Acta 51, 943–951 (2005)CrossRefGoogle Scholar
  93. 93.
    A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)CrossRefGoogle Scholar
  94. 94.
    Q. Wan, T.H. Wang, Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem. Commun. 14, 3841–3843 (2005)CrossRefGoogle Scholar
  95. 95.
    N.S. Ramgir, I.S. Mull, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from rudoped SnO2 nanowires. Sensor Actuat B 107, 708–715 (2005)CrossRefGoogle Scholar
  96. 96.
    L.H. Qian, K. Wang, Y. Li, H.T. Fang, Q.H. Lu, X.L. Ma, CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys. 100, 82–84 (2006)CrossRefGoogle Scholar
  97. 97.
    E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Tin oxide nanobelts electrical and sensing properties. Sensor Actuat B 111112, 2–6 (2005)CrossRefGoogle Scholar
  98. 98.
    Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19, 095508–4 (2008)CrossRefGoogle Scholar
  99. 99.
    N. Van Hieu, N. Duc Chien, Highly reproducible synthesis of very large-scale tin oxide nanowires used for screen-printed gas sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1270–1273Google Scholar
  100. 100.
    A. Ponzoni, C. Baratto, S. Bianchi, E. Comini, M. Ferroni, M. Pardo, M. Vezzoli, A. Vomiero, G. Faglia, G. Sberveglieri, Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens. J. 8(6), 735–742 (2008)CrossRefGoogle Scholar
  101. 101.
    G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Vomiero, Single crystalline metal oxide nano-wires/tubes: controlled growth for sensitive gas sensor devices, 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand. Jan 2007, pp. 227–229Google Scholar
  102. 102.
    S. Zhang, X. Xia, C. Xie, S. Cai, H. Li, D. Zeng, A method of feature extraction on recovery curves for fast recognition application with metal oxide gas sensor array. IEEE Sens. J. 9(12), 1705–1710 (2009)CrossRefGoogle Scholar
  103. 103.
    S. Bicelli, A. Depari, G. Faglia, A. Flammini, A. Fort, M. Mugnaini, A. Ponzoni, V. Vignoli, S. Rocchi, Model and experimental characterization of the dynamic behavior of low-power carbon monoxide MOX sensors operated with pulsed temperature profiles. IEEE Trans. Instrum. Meas. 58(5), 1324–1332 (2009)CrossRefGoogle Scholar
  104. 104.
    M. Messina, F. Franze, N. Speciale, E. Cozzani, A. Roncaglia, Thermofluid analysis of ultra low power hotplates for a MOX gas sensing device. IEEE Sens. J. 9(5), 504–511 (2009)CrossRefGoogle Scholar
  105. 105.
    A. Hackner, A. Habauzit, G. Muller, E. Comini, G. Faglia, G. Sberveglieri, Surface ionization gas detection on platinum and metal oxide surfaces. IEEE Sens. J. 9(12), 1727–1733 (2009)CrossRefGoogle Scholar
  106. 106.
    J. Courbat, D. Briand, L. Yue, S. Raible, N.F. De Rooij, Ultra-low power metal-oxide gas sensor on plastic foil, International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers, Denver, June 2009, pp. 584–587Google Scholar
  107. 107.
    S. Bicelli, A. Depari, G. Faglia, A. Flammini, A. Fort, M. Mugnaini, A. Ponzoni, V. Vignoli, Model and experimental characterization of dynamic behaviour of low power Carbon Monoxide MOX sensors with pulsed temperature profile, in Proceedings of IEEE Instrumentation and Measurement Technology Conference - IMTC, Victoria, May 2008, pp. 1413–1418Google Scholar
  108. 108.
    I. Elmi, S. Zampolli, E. Cozzani, M. Passini, G. Pizzochero, G. C. Cardinali, M. Severi, Ultra low power MOX sensors with ppb-level VOC detection capabilities, Proceedings of IEEE Sensors, Oct 2007, pp. 170–173Google Scholar
  109. 109.
    S. Bicelli, A. Flammini, A. Depari, D. Marioli, A. Ponzoni, G. Sberveglieri, A. Taroni, Low-power carbon monoxide MOX sensors for wireless distributed sensor networks, in Proceedings of IEEE Instrumentation and Measurement Technology Conference, May 2007, pp. 1–5Google Scholar
  110. 110.
    J. Frank, M. Fleischer, H. Meixner, Gas-sensitive electrical properties of pure and doped semiconducting Ga2O3 thick films. Sensor Actuat B 48(1–3), 318–321 (1998)CrossRefGoogle Scholar
  111. 111.
    K. Sahner, M. Fleischer, E. Magori, H. Meixner, J. Deerberg, R. Moos, HC-sensor for exhaust gases based on semiconducting doped SrTiO3 for on-board diagnosis. Sensor Actuat B 114(2), 861–868 (2006)CrossRefGoogle Scholar
  112. 112.
    D. Biskupski, K. Wiesner, R. Moos, M. Fleischer, Automotive exhaust gas sensor based on a combination of electrochemical pumping cell and resistive gas sensor, Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1288–1289Google Scholar
  113. 113.
  114. 114.
    A. Oprea, N. Barsan, U. Weimar, M. L. Bauersfeld, D. Ebling, Capacitive humidity sensors on flexible RFID labels, Solid-State Sensors, Actuators and Microsystems International Conference, Transducers, Lyon, 2007, pp. 2039–2042Google Scholar
  115. 115.
    M. Hernaez, C.R. Zamarreño, I. Del Villar, F.J. Arregui, I.R. Matias, Optical fiber humidity sensor based on lossy mode resonances. Int. J. Smart Sens. Intell. Syst. 2(4), 653–660 (2009)Google Scholar
  116. 116.
    Z. Chen, C. Lu, Humidity sensors: A review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)CrossRefGoogle Scholar
  117. 117.
    C.Y. Lee, G.B. Lee, Humidity sensors: A review. Sensor Lett. 3, 1–15 (2005)CrossRefGoogle Scholar
  118. 118.
  119. 119.
  120. 120.
    M. Havelková, T. Randák, V. Žlábek, J. Krijt, H. Kroupová, J. Pulkrabová, Z. Svobodová, Biochemical markers for assessing aquatic contamination. Sensors 7, 2599–2611 (2007)CrossRefGoogle Scholar
  121. 121.
    M. Strlič, I.K. Cigić, J. Kolar, G. de Bruin, B. Pihlar, Non-destructive evaluation of historical paper based on pH estimation from VOC emissions. Sensors 7, 3136–3145Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Electrical and Information Engineering DepartmentUniversity of L’AquilaL’AquilaItaly

Personalised recommendations