Skip to main content

Experimentally Founded Charge Transport Model for Icosahedral Boron-Rich Solids

  • Conference paper
  • First Online:
Book cover Boron Rich Solids

Abstract

Charge transport in icosahedral boron-rich solids, in particular in boron carbide, has been controversially discussed. Theoretical band structure calculations, based on idealized instead of real structures, yield qualitatively wrong results; metallic instead of semiconducting behavior in consequence of neglecting intrinsic structural defects. The theoretical bipolaron hypothesis is not compatible with numerous experimental results. In contrast, the actual energy band schemes of β-rhombohedral boron and boron carbide mainly derived from optical investigations allows the consistent description of most of the experimental results. Electronic transport is a superposition of hopping-type and band-type transport, whose share depends on the actual conditions and the antecedent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Werheit H, Schmechel R, Boron, 1998, in Landolt-Börnstein, Numerical Data and functional relationships in Science and Technology Group III, Vol. 41C, Springer, Berlin, p 3.

    Google Scholar 

  2. Werheit H, Boron Compounds, 2000, Landolt-Börnstein, Numerical Data and functional relationships in Science and Technology Group III, Vol. 41D, Springer, Berlin, p. 1–491.

    Google Scholar 

  3. Werheit H, Schmechel R, Boron, 1998, in Landolt-Börnstein, Numerical Data and functional relationships in Science and Technology Group III, Vol. 41C, Springer, Berlin, p 3.

    Google Scholar 

  4. Werheit H, Boron Compounds, 2000, Landolt-Börnstein, Numerical Data and functional relationships in Science and Technology Group III, Vol. 41D, Springer, Berlin, p. 1–491.

    Google Scholar 

  5. Werheit H, Kuhlmann U, Lundström T 1994, On the insertion of carbon atoms in B12 icosahedra and the structural anisotropy of β-rhombohedral boron and boron carbide, J. Alloys Comp 204, 197.

    Article  Google Scholar 

  6. Bohn RK, Bohn MD, 1971, The Molecular Structures of 1,2-, 1,7-, and 1,12-Dicarba- 10C2H12, Inorg. Chem. 10 350.

    Article  Google Scholar 

  7. Werheit H, Filipov V, Kuhlmann U, Schwarz U, Armbrüster M, Leithe-Jasper A, Tanaka T, Higashi I, Lundström T, Gurin VN, Korsukova MM, 2009 Raman Effect in Icosahedral Boron-Rich Solids (submitted to STAM).

    Google Scholar 

  8. Higashi I, Kobayashi K, Tanaka T, Ishizawa Y, 1997, Structure refinement of YB62 and YB56 of the YB66-type structure, J. Solid State Chem. 133, 16.

    Article  ADS  Google Scholar 

  9. Perrot F 1981 First approach to the band structure of α-rhombohedral boron Phys. Rev. B 23 2004

    Article  ADS  Google Scholar 

  10. Armstrong DR, 1987, The electronic structure of some α-boron compounds and metal borides, Proc 9th. Int. Symp. Boron, Borides, and Rel. Comp., University Duisburg, Germany, 125.

    Google Scholar 

  11. Armstrong DR, Bolland J, Perkins PG, Will G and Kirfel A 1983, The nature of the chemical bonding in boron carbide. IV. Electronic band structure of boron carbide, B13C2, and three models of the structure B12C3 Acta Crystallogr. B 39 324.

    Article  Google Scholar 

  12. Bylander DM, Kleinman L. 1991, Phys. Rev. B 43, 1487.

    Article  ADS  Google Scholar 

  13. Bullett D W 1982 Structure and bonding in crystalline boron and B12C3 J. Phys. C: Solid State Phys 15 415.

    Article  ADS  Google Scholar 

  14. Schmechel R, Werheit H 1999, Correlation between structural defects and electronic properties of icosahedral boron-rich solids J. Phys.: Condens. Matter 11 6803

    Article  ADS  Google Scholar 

  15. Schmechel R, Werheit H 1997 Structural defects of some icosahedral boron-rich solids and their correlation with the electronic properties, J. Solid State Chem. 133 335

    Article  ADS  Google Scholar 

  16. Morosin B, Mullendore A W, Emin D and Slack G A 1986 Rhombohedral crystal structure of compounds containing boron-rich icosahedra Boron-Rich Solids, AIP Conf. Proc. 14, 70

    ADS  Google Scholar 

  17. Slack GA, Hejna CI, Garbauskas MF, Kasper JS 1987, Proc. 9th Int. Symp. Boron, borides and Rel. Comp., ed. H Werheit, University of Duisburg, Germany p 132

    Google Scholar 

  18. Slack G A, Hejna C I, Garbauskas M F, Kasper J S 1988 J Solid State Chem 76 p 64

    Article  ADS  Google Scholar 

  19. Kuhlmann U, Werheit H 1992, On the microstructure of boron carbide, Solid State Comm. 83 849

    Article  ADS  Google Scholar 

  20. Kuhlmann U, Werheit H, Schwetz K A 1992, Distribution of carbon atoms on the boron carbide structure elements, J. Alloys Comp. 189 249

    Article  Google Scholar 

  21. Higashi I, Kobayashi K, Tanaka T, Ishizawa Y 1997, Structure refinement of YB62 and YB56 of the YB66-type structure; J. Solid State Chem 133 p 16

    Article  ADS  Google Scholar 

  22. Emin D 1986 Electronic transport in boron carbides AIP Conf. Proc. 140, p 189

    Article  ADS  Google Scholar 

  23. Emin D 2006 Unusual properties of icosahedral boron-rich solids J. Solid State Chem. 179 pp 2791–2798

    Article  ADS  Google Scholar 

  24. H. Werheit, 2007, Are there bipolarons in icosahedral boron-rich solids? J. Phys.: Condens. Matter 19 186–207

    Article  Google Scholar 

  25. Devreese JT, Polaron 2005, Encyclopedia of Physics, ed R.G. Lerner and G.L. Trigg (Weinheim: Wiley-VCH), Vol. 2, pp 2004–27

    Google Scholar 

  26. Werheit H, Hausen A, Binnenbruck H 1972, Optical anisotropy of β-rhombohedral boronfrom 0.4 to 16 μm, phys. stat. sol. (b) 51, 115

    Article  ADS  Google Scholar 

  27. Smith, R.A., Wave Mechanics in Crystalline Solids, Chapman & Hall, London, 1961

    Google Scholar 

  28. Adachi S., Calculation model for the optical constants of amorphous semiconductors, J. Appl. Phys. 70, 2304 (1991)

    Article  ADS  Google Scholar 

  29. Lucovsky, G., On the Photoionisation of Deep Impurity Centers in Semiconductors, Solid State Commun. 3, 299 (1965)

    Article  ADS  Google Scholar 

  30. Werheit H, Leis HG, 1970, On the conductivity mechanism of β-rhombohedral boron, phys. Stat. sol. 41, 247

    Article  ADS  Google Scholar 

  31. Szadkowski A, 1979, Thermally activated hopping in β-rhombohedral boron, J Less-Common Met., 67, 551

    Article  Google Scholar 

  32. Werheit H, 1970, Optical and photoelectric properties of β-rhombohedral boron, phys. stat. sol. 39, 109

    Article  ADS  Google Scholar 

  33. Eagles DM, 1960, J. Phys. Chem. Solids 16, 76

    Article  ADS  Google Scholar 

  34. Werheit H, Schmidt M, Schmechel R Lundström T, 2000, Modulated photoconductivity of high-purity and carbon-doped β-rhombohedral boron J. Solid State Chem 154, 93

    Article  ADS  Google Scholar 

  35. Schmechel R, Werheit H, 2000, Photoluminescence and steady-state interband photoconductivity of hig-purity β-rhombohedral boron, J. Solid State Chem. 154, 68

    Article  ADS  Google Scholar 

  36. Werheit H, Kummer F, 1995, Soliton propagation and diffusion of optically excited carriers in β-rhombohedral boron, J. Phys.: Condens. Matter 7, 7851

    Article  ADS  Google Scholar 

  37. Werheit H, Moldenhauer A, 2006, On the diffusion of free carriers in β-rhombohedral boron, J. Solid State Chem. 179 2775

    Article  ADS  Google Scholar 

  38. Feng Y, Seidler G T, Cross J O, Macrander AT and Rehr JJ 2004, Role of inversion symmetry and multipole effects in nonresonant x-ray Raman scattering from icosahedral B4C, Phys. Rev. B 69 125402

    Article  ADS  Google Scholar 

  39. Schmechel R, Werheit H, Kampen T U and Mönch W 2004, Photoluminescence in boron carbide, J. Solid State Chem. 177 566–8

    Article  ADS  Google Scholar 

  40. Werheit H, 2006, On excitons and other gap states in boron carbide, J. Phys.: Condens. Matter 18 10655.

    Article  ADS  Google Scholar 

  41. Werheit H 2007, Are there bipolarons in icosahedral boron-rich solids?, J. Phys.: Condens. Matter 19, 186–207.

    Article  Google Scholar 

  42. Werheit H, 2009, Present knowledge of electronic properties and charge transport of icosahedral boron-rich solids, J. Phys.: Conf. Series 176, 012019

    Article  ADS  Google Scholar 

  43. Werheit, H., Laux, M., Kuhlmann, U., Telle, R., Optical interband transitions of boron carbide, Phys. Stat. Sol. (b) 172 (1992) K81

    Article  ADS  Google Scholar 

  44. Werheit, H., Binnenbruck, H., Hausen, A., 1971, Optical properties of boron carbide and comparison with β-rhombohedral boron, phys.stat. sol. (b) 47 153

    Article  ADS  Google Scholar 

  45. Werheit, H., Leithe-Jasper, A., Tanaka, T., Rotter, H.W., Schwetz, K.A., 2004, Some properties of single-crystal boron carbide, J. Solid State Chem. 177 575

    Article  ADS  Google Scholar 

  46. Werheit H, Filipov V, Schwarz U, Armbrüster M, Leithe-Jasper A, Tanaka T, Shalamberidze SO, 2009, On surface Raman scattering and luminescence radiation in boron carbide, J. Phys.: Condens Matter (in press)

    Google Scholar 

  47. Schmechel, R, Werheit, H, 1998, Dynamical transport in icosahedral boron-rich solids, J. Mat. Process. Manufact. Sci. 6 329

    Google Scholar 

  48. Wood, C, 1986, Transport properties of boron carbide, AIP Conf. Proc. 140, 206

    Article  ADS  Google Scholar 

  49. Schmechel, R., Thesis, Gerhard Mercator University Duisburg, Germany, 1998

    Google Scholar 

  50. Armstrong R, Bolland J, Perkins PG, Will G, Kirfel A, 1983, The nature of the chemical bonding in boron carbide IV. Electronic band structure of boron carbide, B13C2, and three models of the structure B12C3, Acta Crystallogr. B 39 324

    Article  Google Scholar 

  51. Geist D, Meyer J, Peussner H, 1970, Electrical conductivity and movable carrier electron paramagnetic resonance (EPR), Boron Vol. 3, ed T Niemyski (Warszawa: PWN-Polish Scientific Publishers) p 207

    Google Scholar 

  52. Werheit H, Binnenbruck H, Hausen A 1971 Optical properties of boron carbide and comparison with β-rhombohedral boron, phys. stat. sol. (b) 47 153

    Article  ADS  Google Scholar 

  53. Binnenbruck H, Werheit H 1979, IR-active phonons of boron and boron carbide, Z. Naturforsch. 34a 787

    ADS  Google Scholar 

  54. Schmechel R, Werheit H 1997 Evidence of the superposition of Drude type and hopping type transport in boron-rich solids, J. Solid State Chem. 133 335

    Article  ADS  Google Scholar 

  55. Schmechel R, Werheit H 1998 Dynamical transport in icosahedral boron-rich solids J. Mat. Process. Manufact. Sci. 6 329

    Google Scholar 

  56. Soga K, Oguri A, Araake S, Terauchi M, Fujiwara A, Kimura K, 2004, Li-and Mgdoping into icosahedral boron crystals, α-and β-rhombohedral boron, targeting hightemperature superconductivity: structure and electronic states, J. Solid State Chem. 177, 498

    Article  ADS  Google Scholar 

  57. Hyodo H, Araake S, Hosoi S, Soga K, Sato Y, Terauchi M, Kimura K, 2008, Structure and electronic properties of Mg-doped β-rhombohedral boron constructed from icosahedral clusters, Phys Rev B 77 024515.

    Article  ADS  Google Scholar 

  58. H. Werheit, 2006, Thermoelectric properties of boron-rich solids and their possibilities of technical application, Proc. 25th Int. Conf. on Thermoelectrics (Vienna, Austria, Aug. 2006) ed. P. Rogl (Piscataway, NJ: IEEE, Catalog Nr. 06TH8931) pp. 159–163

    Google Scholar 

  59. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, 2001, Superconductivity at 39 K in MgB2, Nature 410, 63.

    Article  ADS  Google Scholar 

  60. Soga K, Oguri A, Araake S, Terauchi M, Fujiwara A and Kimura K, 2004, Li-and Mgdoping into icosahedral boron crystals, α-and β-rhombohedral boron, targeting hightemperature superconductivity: structure and electronic states, J Solid State Chem. 177 498

    Article  ADS  Google Scholar 

  61. Shirai K, Dekura H, Masago A, 2009, Superconductivity research on boron solids and an efficient doping method, J. Phys.: Conf. Series 176, 012001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Werheit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Werheit, H. (2010). Experimentally Founded Charge Transport Model for Icosahedral Boron-Rich Solids. In: Orlovskaya, N., Lugovy, M. (eds) Boron Rich Solids. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9818-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9818-4_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9817-7

  • Online ISBN: 978-90-481-9818-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics