Skip to main content

Processing and Properties of Ultra-Refractory Composites Based on Zr- and Hf-Borides: State of the Art and Perspectives

  • Conference paper
  • First Online:

Abstract

High performance Ultra-High-Temperature Composites, based on zirconium and hafnium borides, are characterized by relevant and unique thermo-physical and thermo-mechanical properties, suitable for applications in aerospace hot structures and in many industrial sectors where extreme conditions are present.

In spite of the difficult sinterability of Zr- and Hf-diborides, recent results highlight that these ceramics can be produced with full density, fine microstructure and controlled mechanical and thermal properties, through different procedures: pressureless sintering and hot pressing with proper sintering aids, reactive synthesis/sintering procedures starting from precursors, field assisted technologies like spark plasma sintering (SPS).

A proper selection of reinforcing phase (SiC, B4C, TaSi2, MoSi2, etc) leads to improvements in mechanical properties and oxidation resistance of ZrB2 and HfB2 ceramic composites.

Strength as high as ~800 MPa at room temperature and at 1,500°C in air can be obtained for HfB2-based composites, after an accurate tailoring of compositions and processing parameters. SPS proved to be a very rapid fabrication process leading to refined microstructure and improved properties of ultra-refractory diborides-based composites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Upadhya K, Yang J-M., and Hoffmann W. P., Materials for ultrahigh temperature applications, Am. Ceram. Soc. Bull., 58, 51–56, 1997.

    Google Scholar 

  2. Opeka M. M., Talmy I. G., and Zaykoski J. A., Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience, J. Mater. Sci., 39, 5887–5904, 2004.

    Article  ADS  Google Scholar 

  3. Levine S. R., Opila E. J., Halbig M. C., Kiser J. D., Singh M., and Salem J. A., Evaluation of ultra-high temperature ceramics for aeropropulsion use, J. Europ. Ceram. Soc., 22, 2757–2767, 2002.

    Article  Google Scholar 

  4. Opeka M. M., Talmy I. G., Wuchina E. J., Zaykoski J. A., and Causey S. J., Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds, J.Europ. Ceram. Soc., 19, 2405–2414, 1999.

    Article  Google Scholar 

  5. Sayr A., Carbon fiber reinforced hafnium carbide, J. Mater. Sci., 39, 5995–6003, 2004.

    Article  ADS  Google Scholar 

  6. Van Wie D. M., The hypersonic environment: required operation conditions and design challenges, J. Mater. Sci., 39, 5915–5924, 2004.

    Article  ADS  Google Scholar 

  7. Øvrebø D. N., and Riley F. L., Densification of zirconium diboride”, in Sixth ECerS Conference & Exhibition of the European Ceramic Society, Extended Abstracts Volume 2, British Ceramic Proceedings No. 60IOM Communications Ltd, p.19–21, 1999.

    Google Scholar 

  8. Mroz C., Annual mineral review: zirconium diboride, Am. Ceram. Soc. Bull., 74, 165–66. 1995.

    Google Scholar 

  9. Pastor H., Metallic borides, preparation of solid bodies-sintering methods and properties, in Boron and Refractory Borides. Ed. V. I. Matkovich, Springer Verlag, N. York, p.457–493, 1977.

    Google Scholar 

  10. Low I. M.,and McPherson R., Fabrication of new zirconium boride ceramics, J. Mat. Sci. Lett., 8, 1281–1285, 1989.

    Article  Google Scholar 

  11. Hayami R., Iwasa M., and Kinoshita M., Effects of applied pressure on hot pressing of ZrB2, Yogyo-Kyokai-Shi, 88, 352–358, 1987.

    Google Scholar 

  12. Woo S-K., Han I-S., Kang H-S., Yang J-H., and Kim C-H., Sintering of zirconium diboride through Fe-based liquid phases, J. Korean Ceram. Soc., 33, 259–262, 1996.

    Google Scholar 

  13. Sorrell C. C., Stubican V. S., and Bradt R. C., Mechanical properties of ZrC/ZrB2 and ZrC/TiB2 directionally solidified eutectics, J. Am. Ceram. Soc., 69, 317–321, 1986.

    Article  Google Scholar 

  14. Monteverde F., The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties, Mat. Chem Phys., 113, 626–633, 2009.

    Article  Google Scholar 

  15. Monteverde F., Bellosi A., and Guicciardi S., Processing and properties of zirconium diboride-based composites, J. Europ. Ceram. Soc., 22, 279–288, 2002.

    Article  Google Scholar 

  16. Monteverde F., and Bellosi A., Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride, Scripta Materialia, 46, 223–228, 2002.

    Article  Google Scholar 

  17. Monteverde F., Bellosi A., and Guicciardi S., Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mat. Sci. Eng., A346, 310–319, 2003.

    Google Scholar 

  18. Monteverde F., and Bellosi A., Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot pressed ZrB2, Adv. Eng. Mater., 5, 508–512, 2003.

    Article  Google Scholar 

  19. Monteverde F., and Bellosi A., Efficacy of HfN as sintering aid in the manufacturing of ultra-high temperature metal diborides-matrix ceramics, J. Mat. Res.,19, 3576–3585, 2004.

    Article  ADS  Google Scholar 

  20. Chamberlain A. L., Fahrenholtz W. G. and Hilmas G. E, Pressureless sintering of 2 zirconium diboride, J. Am. Ceram. Soc., 89, 450–456, 2006.

    Article  Google Scholar 

  21. Monteverde F., Progress in the fabrication of ultra-high temperature ceramics: “in-situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2-SiC, Composites Science and Technology 65 [11–12], 1869–1879, 2005.

    Article  Google Scholar 

  22. Sciti D., Guicciardi S., Bellosi A., Properties of a pressureless sintered ZrB2-MoSi2 ceramic composite, J. Amer. Ceram. Soc. 89, 2320–2322, 2006.

    Article  Google Scholar 

  23. Guo S-Q., Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Europ. Ceram Soc. 29, 995–1011, 2009.

    Article  Google Scholar 

  24. Li G., Zhang X., Han J., Effect of AlN as sintering aid on hot pressed ZrB2-SiC ceramic composite. J. Alloy and Comp. (2008).

    Google Scholar 

  25. Zou J., Zhang G-J., Kan Y-M., Wang P-L., Pressureless densification of ZrB2-SiC composites with vanadium carbide. Scripta Mater. 59, 309–312, 2008.

    Article  Google Scholar 

  26. Guo W-M., Zhang G-J., Kan Y-M., Wang P-L., Effect of Yb2O3 addition on hot pressed ZrB2-SiC ceramics, Adv. Eng. Mater. 10, 559–762, 2008.

    Article  Google Scholar 

  27. Meng S., Liu G., An J., Sun S., Effects of different additives on microstructure and crack resistance for an ultra-high temperature ceramic, Int. J. Refr. Met.Hard Mater. 27, 813–816, 2009.

    Article  Google Scholar 

  28. Zhang S. C., Hilmas G. E., Fahrenholtz W. G., Pressureless sintering of ZrB2-SiC ceramics, J. Amer. Ceram. Soc. 91, 26–32, 2008.

    Article  Google Scholar 

  29. Zhang G-J., Deng Z-Y., Yang J-F., and Ohji T., Reactive hot pressing of ZrB2-SiC composites, J. Am. Ceram. Soc., 83, 2330–2332, 2000.

    Article  Google Scholar 

  30. Goldstein A., Geffen Y., and Goldenberg A., Boron carbide-zirconium boride in-situ composites by the reactive pressureless sintering of boron carbide-zirconia mixtures”, J. Am. Ceram. Soc., 84, 642–644 (2001)

    Article  Google Scholar 

  31. Blum Y. D., and Kleebe H.-J.., Chemical reactivities of hafnium and its derived boride, carbide and nitride compounds at relatively mild temperature, J. Mat. Sci., 39, 6023–6042, 2004.

    Article  ADS  Google Scholar 

  32. Wu W.-W., Zhang G.-J., Kann Y.-M., Wang P.-L., Reactive hot pressing of ZrB2-SiC- ZrC composites at 1600°C. J. Am. Ceram. Soc. 91, 2501–2508.

    Article  Google Scholar 

  33. Wu W-W., V, Kan Y-M., Wang P-L., ZrB2-MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing. Scripta Mater. 61, 316–319, 2009.

    Article  Google Scholar 

  34. Guo W-M., Zhang G-J., Reaction Process and Characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J. Am. Ceram. Soc. 92, (2009) 264–267.

    Article  Google Scholar 

  35. Forsthoefel K. and Sneddon L.G., Precursor routes to group 4 metal borides, and metal boride/carbide and metal boride/nitride composites, J. Mat. Sci., 39, 6043–6049, 2004.

    Article  ADS  Google Scholar 

  36. Sacks M. D., Wang C. A., Yang Z. and Jain A., Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors, J. Mater. Sci., 39, 6057–6066, 2004.

    Article  ADS  Google Scholar 

  37. Schwab S. T., Stewart C. A., Ducdeck K. W., Kozmina S. M., Katz J. D., Bartram B., Wuchina E. J., Kroenke W. J., and G. Courtin, Polymeric precursors to refractory metal borides”, J. Mater. Sci., 39, 6051–6055, 2004.

    Article  ADS  Google Scholar 

  38. Yen K., Xray diffraction study of mechanochemical synthesis and formation mechanisms of zirconium carbide and zirconium silicides, J. Alloys & Compounds., 286, 266–269, 1998.

    Article  Google Scholar 

  39. Bhanumurthy K., and Schmid-Fetzer R., Interface reactions between SiC/Zr and development of zirconium base composites by in-situ solid state reactions”, Scripta Materialia., 45, 547–553, 200.

    Article  Google Scholar 

  40. Brochu M., Gauntt B., Zimmerly T., Ayala A., Loehman R., Fabrication of UHTCs by conversion of dynamically consolidated Zr+B and Hf+B powder mixtures., J. Am. Ceram Soc. 91, 2815–2822, 2008.

    Article  Google Scholar 

  41. Spring A., G. W-M., Zhang G-J., Wang P-L., Krstic V. D., Fabrication and characterization of ZrB2-based ceramics using synthesized ZrB2-LaB6 powder” J. Am. Ceram. Soc. 91, 2763–2765, 2008.

    Article  Google Scholar 

  42. Nygren M., and Shen Z., Novel assemblies via spark plasma sintering, Silicates Indust. Special Issue, 69 (7–8), 211–218, 2004.

    Google Scholar 

  43. Sciti D., Silvestroni L., Bellosi A., Fabrication and properties of HfB2–MoSi2 Composites produced by hot pressing, pressureless sintering and spark plasma sintering., J. Mater. Res. 21, 1460–1466, 2006.

    Article  ADS  Google Scholar 

  44. Tokita M., Development of large size ceramic/metal bulk FGM fabricated by spark plasma sintering”, p.83–89, in Materials Science Forum, Vol. 308–311, Proceedings of the 5 th Intern. Symposium on Functionally Graded Materials. Edited by.. Kaysser W. A. Trans Tech Publications Ltd., Aerdermannsdorf, Switzerland, 1999.

    Google Scholar 

  45. Khor K. A., Cheng K. H., Yu L. G., and Boey F., Thermal conductivity and dielectric constant of spark plasma sintered aluminium nitride, Mat. Sci Eng. A, 347, 300–305, 2003.

    Article  Google Scholar 

  46. Feng P., Xiong W., Yu L., Zheng Y., and Xia Y., Phase evolution and microstructure characteristics of ultrafine Ti(C,N)-based cermet by spark plasma sintering, Intern. J. Refr. Met. & Hard Mat., 22, 133–138, 2004.

    Article  Google Scholar 

  47. Shen Z., Johnsson M., and Nygren M., TiN/Al2O3 composites and graded laminates thereof consolidated by spark plasma sintering, J. Europ. Ceram Soc., 23, 1061–1068, 2003.

    Article  Google Scholar 

  48. Fox, K. M., Hellmann R. J., Izui H., Amateau M. F., Fu W., and Coen P.H, Properties and performance of spark plasma laminated WC-Co cutting tools, J. Ceram. Proc. Res., 5, 18–24, 2004.

    Google Scholar 

  49. Perera D. S., Tokita M., and Moricca S., Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing, J. Europ. Ceram. Soc., 18, 401–404, 1998.

    Article  Google Scholar 

  50. Shim S. H., Niihara K., Auh K. H., and. Shim B, Crystallographic orientation of ZrB2- ZrC composites manufactured by the spark plasma sintering method, J. of Microscopy, 205, 238–244, 2002.

    Article  MathSciNet  Google Scholar 

  51. Kim K.H., and Shim K.B., The effect of lanthanum on the fabrication of ZrB2–ZrC composites by spark plasma sintering, Mater. Charact., 50, 31–37, 2003.

    Article  Google Scholar 

  52. Medri V., Monteverde F., Balbo A., and Bellosi A., Comparison of ZrB2-ZrC-SiC composites fabricated by spark plasma sintering and hot pressing”, Adv. Eng. Mater., 7, 159–163, 2005.

    Article  Google Scholar 

  53. Bellosi A., Monteverde F., and Sciti D., Fast densification of ultra-high temperature ceramics by spark plasma sintering”, Int. J. Applied Ceram. Technol., 3, 32–40, 2006.

    Article  Google Scholar 

  54. Licheri R., Orrù R., Musa C., Locci M. A., Cao G., Consolidation via spark plasma sintering of HfB2-SiC and HfB2-HfC-SiC composite powders by self propagating hugh temperature synthesis., J. Alloys and Comp. 478, 572–578, 2009.

    Article  Google Scholar 

  55. Sciti D., Guicciardi S., Nygren M., Densification and mechanical behaviour of HfC and HfB2 fabricated by Spark Plasma Sintering, J. Amer. Ceram. Soc. 91, 1433–1440, 2008.

    Article  Google Scholar 

  56. Sciti D., Silvestroni L., Nygren M., Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid. J. Europ. Ceram Soc. 28, 1287–1296, 2008.

    Article  Google Scholar 

  57. Balbo A., Sciti D., Spark plasma sintering and hot pressing of ZrB2-MoSi2 ultra-high temperature ceramics, Mater. Sci. Eng., A., 475, 108–112, 2008.

    Article  Google Scholar 

  58. Zhao Y., C, Jiang W., Chen L. D., Effect of holding time and pressure on properties of ZrB2-SiC composite fabricated by the spark plasma sintering reactive synthesis method. Int. J. Refr. Met & Hard Mater., 27, 177–180, 2009.

    Article  Google Scholar 

  59. Guo S-Q., Kagawa Y., Nishimura T., Mechanical Behaviour of two step hot pressed ZrB2-based composites with ZrSi2. J. Europ. Ceram. Soc. 29, 787–794, 2009.

    Article  Google Scholar 

  60. Sciti D., Silvestroni L., Celotti G., Melandri C., Guicciardi S., Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites, J. Am. Ceram. Sic. 91, 3285–3291, 2008

    Article  Google Scholar 

  61. Monteverde F., and Bellosi A., The resistance to oxidation of an HfB2-SiC composite, J. Europ. Ceram. Soc., 25, 1025–1031, 2005.

    Article  Google Scholar 

  62. Guo S., Kagawa Y., Nishimura T., Tanaka H., Elastic properties of spark plasma sintered ZrB2-ZrC-SiC composites. Ceram. Int. 34, 1811–1817, 2008.

    Article  Google Scholar 

  63. Yang F., Zhang X., Han J. Du S., Characterization of hot pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites, J. Alloys and Comp. 2008.

    Google Scholar 

  64. Du S., Xu L., Zhang X., Hu P., Han W. Effect of sintering temperature and holding time on the microstructure and mechanical properties of ZrB2-SiCw composites., Mat. Chem and Phys. 116, 76–80, 2009.

    Article  Google Scholar 

  65. Zhang X., Xu L., Han W., Weng L., Han L., Du S., Microstructure and properties of silicon carbide whiskers reinforced zirconium diboride ultra-high temperature ceramics. Solid St. Sci. 11, 156–161, 2009.

    Article  ADS  Google Scholar 

  66. Yang F., Zhang X., Han J., Du S., Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics. Mater. And Design 29, 1817–1820, 2008.

    Article  Google Scholar 

  67. Zhu T., Xu L., Zhang X., Han W., Hu P., Weng L., Densification, microstructure and mechanical properties of ZrB2-SiCw ceramic composites, J. Europ. Ceram. Soc. 29, 2893–2901, 2009.

    Article  Google Scholar 

  68. Yang F., Zhang X., Han J., Du S., Characterization of hot pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites. J. Alloys and Comp. 472, 395–399, 2009.

    Article  Google Scholar 

  69. Zhang P., Hu P., Zhang X., Han J., Meng S., Processing and characterization of ZrB2- SiCw ultra-high temperature ceramics. J. Alloys and Comp. 472, 358–362, 2009.

    Article  Google Scholar 

  70. Zhang X., Wang Z., Sun X., Han W., Hong C., Thermal shock behaviour of ZrB2- 20vol%SiC-15vol%graphite flake by hot pressing, Int. J. Modern Phys. B., 23, 1160–1165 (2009).

    Article  ADS  Google Scholar 

  71. Weng L., Zhang X., Han W., Han J., Fabrication and evaluation on thermal stability of hafnium diboride matrix composites at severe oxidation conditions” J. Refr. Metals Hard mat. 27, 711–717, 2009.

    Article  Google Scholar 

  72. Zhang X., Weng L., Han J., Meng S., Han W, Preparation and Thermal Ablation behaviour of HfB2-SiC-based Ultra-High-Temperature Ceramics under severe heat conditions, Int. J. Appl. Ceram. Technol. 6, 134–144, 2009.

    Article  Google Scholar 

  73. Mitra R., Upender S., Mallik M., Chakraborty S., Ray K. K., Mechanical, Thermal and oxidation behaviour of zirconium diboride based ultra-high temperature ceramic composites, Key Emg. Materials, 395, 55–68, 2009.

    Article  Google Scholar 

  74. Zhang H., Yan Y., Huang Z., Liu X., Jang D., Properties of ZrB2-SiC ceramics by pressureless sintering, J. Am. Ceram. Soc. 92, 1599–1602, 2009-10-26.

    Article  Google Scholar 

  75. Li W., Zhang X., Hong C., Han W., Han W., Han J., Preparation, microstructure and properties of ZrB2-ZrO2 ceramics, J. Europ. Ceram. Soc. 29, 779–786, 2009.

    Article  MATH  Google Scholar 

  76. Zimmermann J. W., Hilmas G. E., Fahrenholtz W. G., Thermal shock resistance of ZrB2 and ZrB2-30%SiC, Mater. Chem and Phys. 112, 140–145, 2008.

    Article  Google Scholar 

  77. D. Sciti, M. Brach and A. Bellosi, “Oxidation behaviour of a pressureless sintered ZrB2-MoSi2 ceramic composite”, J. Mater. Res., 20, 922–930, 2005.

    Article  ADS  Google Scholar 

  78. Sciti D., Brach M., and Bellosi A., Long term oxidation behaviour and mechanical strength degradation of a pressureless sintered ZrB2-MoSi2 composite, Scripta Materialia, 53, 1297–1302, 2005.

    Article  Google Scholar 

  79. Carney C., Oxidation resistance of hafnium diboride-silicon carbide from 1400 to 2000°C, J. Mater. Sci 44, 5673–5681, 2009.

    Article  ADS  Google Scholar 

  80. Zou J., Zhang G-J., Kan Y-M., Formation of tough interlocking microstructure in ZrB2-SiC – based ultrahigh-temperature ceramics by pressureless sintering, J. Mater. Res. 24, 2428–2434, 2009.

    Article  ADS  Google Scholar 

  81. Talmy I., Zaykoski J. A., Opeka M. M., High temperature chemistry and oxidation of ZrB2 Ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2. J. Am. Ceram. Soc. 91, 2250– 2257, 2008.

    Article  Google Scholar 

  82. Zhang S. C., Hilmas G. E., Fahrenholtz W. G. Improved oxidation resistance of zirconium diboride by tungsten carbide additions, J. Am. Ceram. Soc. 2008.

    Google Scholar 

  83. Ni D. W., Zhang G. J., Kan Y. M., Sakka Y., Textured HfB2-based ultrahigh temperature ceramics with anisotropic oxidation behaviour, Scripta Mater. 60, 913– 916, 2009.

    Article  Google Scholar 

  84. Ni D-W., Zhang G-J., Kan Y-M., Sakka Y., Highly Textured HfB2 based ultrahigh temperature ceramics with strong magnetic field alignment, Scripta Mater. 60, 615–618, 2009.

    Article  Google Scholar 

  85. Monteverde F. and Bellosi A., Microstructure and properties of HfB2-SiC composite for ultra-high temperature applications”, Adv. Eng. Mater., 6, 331–336, 2004

    Article  Google Scholar 

  86. Monteverde F., Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2-SiC, Appl.Physics A, 82, 329–337, 2006.

    Article  ADS  Google Scholar 

  87. Opila E., Levine S., and Lorincz J., Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effects of Ta additions, J. Mat. Sci., 39, 5969–5977, 2004.

    Article  ADS  Google Scholar 

  88. Tripp W.C., Davis H.H., and Graham H.C., Effects of an SiC Addition on the Oxidation of ZrB2, Ceram Bull., 52(8), 612–616, 1973.

    Google Scholar 

  89. Monteverde F., and Bellosi A., Oxidation of ZrB2-based ceramics in dry air, J. Electr. Soc., 150, B552–B559, 2003.

    Article  Google Scholar 

  90. Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., and Ellerby D.T., High strength zirconium diboride-based ceramics, J. Am. Ceram. Soc., 87, 1170–1172, 2004.

    Article  Google Scholar 

  91. Bargeron C. B, Benson R. C., Newman R. W., Jette A. N., and Phillips T. E., Oxidation mechanisms of hafnium carbide and hafnium diboride in the temperature range 1400 to 2100°C, John Hopkins APL Technical Digest, 14[1], 29–35, 1993.

    Google Scholar 

  92. Marschall J., Chamberlain A., Crunkleton D., and Rogers B., Catalytic atom recombination on ZrB2-SiC and HfB2-SiC ultra-high-temperature ceramic composites, J. Spacecraft and Rockets, 41, 576–581, 2004.

    Article  ADS  Google Scholar 

  93. Nguyen Q. N, Opila E. J, and Robinson R. C, Oxidation of ultra-high temperature ceramics in water vapour, J. Electroch. Soc., 151, B558–B562, 2004.

    Article  Google Scholar 

  94. Monteverde F., and Bellosi A., Development and characterization of metal diboride based composites toughened with ultrafine SiC particles”, Solid State Sci., 7, 622–630, 2005.

    Article  ADS  Google Scholar 

  95. Gasch M., Ellerby D., Irby E., Beckman S., Gusman M. and Johnson S., Processing, properties and arc-jet oxidation of hafnium diboride/silicon carbide ultra-high temperature ceramics, J. Mat. Sci., 39, 5925–5937, 2004.

    Article  ADS  Google Scholar 

  96. Savino R., De Stefano Fumo M., Silvestroni L., Sciti D. Arc Jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J. Europ. Ceram. Soc. 28, 1899–1907, 2008.

    Article  Google Scholar 

  97. Monteverde F., Savino R. Stability of ultra-high temperature ZrB2-SiC ceramics under simulated reentry conditions. J. Europ. Ceram Soc. 27, 4797–4805, 2007

    Article  Google Scholar 

  98. Silvestroni L., Kleebe H.J., Lauterbach S., Müller M., Sciti D., Transmission electron microscopy on Zr- and Hf-borides with MoSi2 addition: densification mechanisms, accepted to J. of Mater. Research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bellosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bellosi, A., Guicciardi, S., Medri, V., Monteverde, F., Sciti, D., Silvestroni, L. (2010). Processing and Properties of Ultra-Refractory Composites Based on Zr- and Hf-Borides: State of the Art and Perspectives. In: Orlovskaya, N., Lugovy, M. (eds) Boron Rich Solids. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9818-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9818-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9817-7

  • Online ISBN: 978-90-481-9818-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics