Functional Assays for Ricin Detection

  • Eric Ezan
  • Elodie Duriez
  • François Fenaille
  • François Becher
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


In this review, we provide background information on ricin structure, present available functional assays for other toxins that are potential biothreat agents, and finish by describing the functional assay of ricin itself. Using appropriate sample preparation and optimized detection based on N-glycosidase activity, we demonstrate that specific detection of whole ricin at a level of around 0.1 ng/mL is possible and applicable to environmental samples.


Protective Antigen Bacillus Anthracis Seed Variety Anthrax Toxin Gaga Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8:201–208Google Scholar
  2. 2.
    Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning: a comprehensive review. JAMA 294:2342–2351CrossRefGoogle Scholar
  3. 3.
    Ovenden SP et al (2009) De novo sequencing of RCB-1 to -3: peptide biomarkers from the castor bean plant Ricinus communis. Anal Chem 81:3986–3996CrossRefGoogle Scholar
  4. 4.
    Bradberry SM, Dickers KJ, Rice P, Griffiths GD, Vale JA (2003) Ricin poisoning. Toxicol Rev 22:65–70CrossRefGoogle Scholar
  5. 5.
    Burnett JC, Henchal EA, Schmaljohn AL, Bavari S (2005) The evolving field of biodefence:therapeutic developments and diagnostics. Nat Rev Drug Discov 4:281–297CrossRefGoogle Scholar
  6. 6.
    Crompton R, Gall D (1980) Georgi Markov–death in a pellet. Med Leg J 48:51–62Google Scholar
  7. 7.
    Olsnes S, Kozlov JV (2001) Ricin. Toxicon 39:1723–1728CrossRefGoogle Scholar
  8. 8.
    Barbieri L et al (2004) Enzymatic activity of toxic and non-toxic type 2 ribosome-inactivating proteins. FEBS Lett 563:219–222CrossRefGoogle Scholar
  9. 9.
    Lappi DA, Kapmeyer W, Beglau JM, Kaplan NO (1978) The disulfide bond connecting the chains of ricin. Proc Natl Acad Sci USA 75:1096–1100CrossRefGoogle Scholar
  10. 10.
    Araki T, Funatsu G (1987) The complete amino acid sequence of the B-chain of ricin E isolated from small-grain castor bean seeds. Ricin E is a gene recombination product of ricin D and Ricinus communis agglutinin. Biochim Biophys Acta 911:191–200CrossRefGoogle Scholar
  11. 11.
    Frankel A et al (1996) Characterization of single site ricin toxin B chain mutants. Bioconjug Chem 7:30–37CrossRefGoogle Scholar
  12. 12.
    Sandvig K, van Deurs B (1999) Endocytosis and intracellular transport of ricin: recent discoveries. FEBS Lett 452:67–70CrossRefGoogle Scholar
  13. 13.
    Lord MJ et al (2003) Ricin. Mechanisms of cytotoxicity. Toxicol Rev 22:53–64CrossRefGoogle Scholar
  14. 14.
    Roberts LM, Smith DC (2004) Ricin: the endoplasmic reticulum connection. Toxicon 44: 469–472CrossRefGoogle Scholar
  15. 15.
    Moazed D, Robertson JM, Noller HF (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362–364CrossRefGoogle Scholar
  16. 16.
    Fu T et al (1996) Ricin toxin contains three lectin sites which contribute to its in vivo toxicity. Int J Immunopharmacol 18:685–692CrossRefGoogle Scholar
  17. 17.
    Brinkworth CS, Pigott EJ, Bourne DJ (2009) Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 81:1529–1535CrossRefGoogle Scholar
  18. 18.
    Poli MA, Rivera VR, Hewetson JF, Merrill GA (1994) Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon 32:1371–1377CrossRefGoogle Scholar
  19. 19.
    Yan-Kenigsberg J, Bertocchi A, Garber EA (2008) Rapid detection of ricin in cosmetics and elimination of artifacts associated with wheat lectin. J Immunol Methods 336:251–254CrossRefGoogle Scholar
  20. 20.
    Lubelli C et al (2006) Detection of ricin and other ribosome-inactivating proteins by an immuno-polymerase chain reaction assay. Anal Biochem 355:102–109CrossRefGoogle Scholar
  21. 21.
    Fredriksson SA et al (2005) Forensic identification of neat ricin and of ricin from crude castor bean extracts by mass spectrometry. Anal Chem 77:1545–1555CrossRefGoogle Scholar
  22. 22.
    Van Baar BL, Hulst AG, Wils ER (1999) Characterisation of cholera toxin by liquid chromatography – electrospray mass spectrometry. Toxicon 37:85–108CrossRefGoogle Scholar
  23. 23.
    Van Baar BL, Hulst AG, de Jong AL, Wils ER (2002) Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J Chromatogr A 970:95–115CrossRefGoogle Scholar
  24. 24.
    Kalb SR, Goodnough MC, Malizio CJ, Pirkle JL, Barr JR (2005) Detection of botulinum neurotoxin A in a spiked milk sample with subtype identification through toxin proteomics. Anal Chem 77:6140–6146CrossRefGoogle Scholar
  25. 25.
    Oda T, Komatsu N, Muramatsu T (1997) Cell lysis induced by ricin D and ricin E in various cell lines. Biosci Biotechnol Biochem 61:291–297CrossRefGoogle Scholar
  26. 26.
    Despeyroux D et al (2000) Characterization of ricin heterogeneity by electrospray mass spectrometry, capillary electrophoresis, and resonant mirror. Anal Biochem 279:23–36CrossRefGoogle Scholar
  27. 27.
    Lin TT, Li SL (1980) Purification and physicochemical properties of ricins and agglutinins from Ricinus communis. Eur J Biochem 105:453–459CrossRefGoogle Scholar
  28. 28.
    Kimura Y et al (1988) Structures of sugar chains of ricin D. J Biochem 103:944–949Google Scholar
  29. 29.
    Kimura Y, Kusuoku H, Tada M, Takagi S, Funatsu G (1990) Structural analyses of sugar chains from ricin A-chain variant. Agric Biol Chem 54:157–162Google Scholar
  30. 30.
    El-Nikhely N, Helmy M, Saeed HM, bou Shama LA, bd El-Rahman Z (2007) Ricin A chain from Ricinus sanguineus: DNA sequence, structure and toxicity. Protein J 26:481–489CrossRefGoogle Scholar
  31. 31.
    Duriez E, Fenaille F, Tabet JC, Lamourette P, Hilaire D, Becher F, Ezan E (2008) Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Proteome Res 7:4154–4163CrossRefGoogle Scholar
  32. 32.
    Demirev PA, Fenselau C (2008) Mass spectrometry in biodefense. J Mass Spectrom 43:1441–1457CrossRefGoogle Scholar
  33. 33.
    Sharma SK, Whiting RC (2005) Methods for detection of Clostridium botulinum toxin in foods. J Food Prot 68:1256–1263Google Scholar
  34. 34.
    Notermans S, Nagel J (1989) Botulinum neurotoxin and tetanus toxin. In: Simpson LL (ed) Assays for botulinum and tetanus toxins. Academic, San Diego, CA, pp 319–331Google Scholar
  35. 35.
    Montecucco C, Schiavo G (1995) Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28:423–472CrossRefGoogle Scholar
  36. 36.
    Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S (2004) Role of metals in the biological activity of Clostridium botulinum neurotoxins. Biochemistry 43:2209–2216CrossRefGoogle Scholar
  37. 37.
    Schmidt JJ, Stafford RG (2003) Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F. Appl Environ Microbiol 69:297–303CrossRefGoogle Scholar
  38. 38.
    Ekong TA, Feavers IM, Sesardic D (1997) Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. Microbiology 143:3337–3347CrossRefGoogle Scholar
  39. 39.
    Hallis B, James BA, Shone CC (1996) Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. J Clin Microbiol 34:1934–1938Google Scholar
  40. 40.
    Sharma SK, Ferreira JL, Eblen BS, Whiting RC (2006) Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl Environ Microbiol 72:1231–1238CrossRefGoogle Scholar
  41. 41.
    Wictome M, Newton K, Jameson K, Hallis B, Dunnigan P, Mackay E, Clarke S, Taylor R, Gaze J, Foster K, Shone C (1999) Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl Environ Microbiol 65:3787–3792Google Scholar
  42. 42.
    Boyer AE, Quinn CP, Woolfitt AR, Pirkle JL, McWilliams LG, Stamey KL, Bagarozzi DA, Hart JC Jr, Barr JR (2007) Detection and quantification of anthrax lethal factor in serum by mass spectrometry. Anal Chem 79:8463–8470CrossRefGoogle Scholar
  43. 43.
    Kalb SR et al (2006) The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal Biochem 351:84–92, Kalb, S. R., Woolfitt, A. R. & Barr, J. RCrossRefGoogle Scholar
  44. 44.
    Molin FD, Fasanella A, Simonato M, Garofolo G, Montecucco C, Tonello F (2008) Ratio of lethal and edema factors in rabbit systemic anthrax. Toxicon 52:824–828CrossRefGoogle Scholar
  45. 45.
    Sastry KS, Tuteja U, Santhosh PK, Lalitha MK, Batra HV (2003) Identification of Bacillus anthracis by a simple protective antigen-specific mAb dot-ELISA. J Med Microbiol 52:47–49CrossRefGoogle Scholar
  46. 46.
    Mabry R, Brasky K, Geiger R, Carrion R Jr, Hubbard GB, Leppla S, Patterson JL, Georgiou G, Iverson BL (2006) Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. Clin Vaccine Immunol 13:671–677CrossRefGoogle Scholar
  47. 47.
    Buchanan TM, Feeley JC, Hayes PS, Brachman PS (1971) Anthrax indirect microhemagglutination test. J Immunol 107:1631–1636Google Scholar
  48. 48.
    Harrison LH, Ezzell JW, Abshire TG, Kidd S, Kaufmann AF (1989) Evaluation of serologic tests for diagnosis of anthrax after an outbreak of cutaneous anthrax in Paraguay. J Infect Dis 160:706–710Google Scholar
  49. 49.
    Quinn CP, Semenova VA, Elie CM, Romero-Steiner S, Greene C, Li H, Stamey K, Steward-Clark E, Schmidt DS, Mothershed E, Pruckler J, Schwartz S, Benson RF, Helsel LO, Holder PF, Johnson SE, Kellum M, Messmer T, Thacker WL, Besser L, Plikaytis BD, Taylor TH Jr, Freeman AE, Wallace KJ, Dull P, Sejvar J, Bruce E, Moreno R, Schuchat A, Lingappa JR, Martin SK, Walls J, Bronsdon M, Carlone GM, Bajani-Ari M, Ashford DA, Stephens DS, Perkins BA (2002) Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerg Infect Dis 8:1103–1110Google Scholar
  50. 50.
    Sirisanthana T, Nelson KE, Ezzell JW, Abshire TG (1988) Serological studies of patients with cutaneous and oral-oropharyngeal anthrax from northern Thailand. Am J Trop Med Hyg 39:575–581Google Scholar
  51. 51.
    Biagini RE, Sammons DL, Smith JP, Page EH, Snawder JE, Striley CA, MacKenzie BA (2004) Determination of serum IgG antibodies to Bacillus anthracis protective antigen in environmental sampling workers using a fluorescent covalent microsphere immunoassay. Occup Environ Med 61:703–708CrossRefGoogle Scholar
  52. 52.
    Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C (2000) Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J 352(Pt 3):739–745CrossRefGoogle Scholar
  53. 53.
    Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC (2004) The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nat Struct Mol Biol 11:60–66CrossRefGoogle Scholar
  54. 54.
    Drum CL, Yan SZ, Sarac R, Mabuchi Y, Beckingham K, Bohm A, Grabarek Z, Tang WJ (2000) An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis. J Biol Chem 275:36334–36340CrossRefGoogle Scholar
  55. 55.
    Duriez E, Goossens PL, Becher F, Ezan E (2009) Femtomolar detection of the anthrax edema factor in human and animal plasma. Anal Chem 81:5935–5941CrossRefGoogle Scholar
  56. 56.
    Boyer AE, Moura H, Woolfitt AR, Kalb SR, McWilliams LG, Pavlopoulos A, Schmidt JG, Ashley DL, Barr JR (2005) From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal Chem 77:3916–3924CrossRefGoogle Scholar
  57. 57.
    McGuinness CR, Mantis NJ (2006) Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin B subunit. Infect Immun 74:3463–3470CrossRefGoogle Scholar
  58. 58.
    Mantis NJ, McGuinness CR, Sonuyi O, Edwards G, Farrant SA (2006) Immunoglobulin A antibodies against ricin A and B subunits protect epithelial cells from ricin intoxication. Infect Immun 74:3455–3462CrossRefGoogle Scholar
  59. 59.
    Hines HB, Brueggemann EE, Hale ML (2004) High-performance liquid chromatography-mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal Biochem 330:119–122CrossRefGoogle Scholar
  60. 60.
    Heisler I, Keller J, Tauber R, Sutherland M, Fuchs H (2002) A colorimetric assay for the quantitation of free adenine applied to determine the enzymatic activity of ribosome-inactivating proteins. Anal Biochem 302:114–122CrossRefGoogle Scholar
  61. 61.
    Barbieri L et al (1997) Polynucleotide:adenosine glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly(A). Nucleic Acids Res 25:518–522CrossRefGoogle Scholar
  62. 62.
    Brigotti M et al (1998) A rapid and sensitive method to measure the enzymatic activity of ribosome-inactivating proteins. Nucleic Acids Res 26:4306–4307CrossRefGoogle Scholar
  63. 63.
    Keener WK, Rivera VR, Young CC, Poli MA (2006) An activity-dependent assay for ricin and related RNA N-glycosidases based on electrochemiluminescence. Anal Biochem 357:200–207CrossRefGoogle Scholar
  64. 64.
    Kalb SR, Barr JR (2009) Mass spectrometric detection of ricin and its activity in food and clinical samples. Anal Chem 81:2037–2042CrossRefGoogle Scholar
  65. 65.
    Chen XY, Link TM, Schramm VL (1998) Ricin A-chain: kinetics, mechanism, and RNA stem-loop inhibitors. Biochemistry 37:11605–11613CrossRefGoogle Scholar
  66. 66.
    De DC (2005) The lysosome turns fifty. Nat Cell Biol 7:847–849CrossRefGoogle Scholar
  67. 67.
    Becher F, Duriez E, Volland H, Tabet JC, Ezan E (2007) Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spectrometry. Anal Chem 79:659–665CrossRefGoogle Scholar
  68. 68.
    Amukele TK, Schramm VL (2004) Ricin A-chain substrate specificity in RNA, DNA, and hybrid stem-loop structures. Biochemistry 43(17):4913–4922CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eric Ezan
    • 1
  • Elodie Duriez
    • 1
  • François Fenaille
    • 1
  • François Becher
    • 1
  1. 1.CEA, Ibitecs, Service de Pharmacologie et d’ImmunoanalyseGif-sur-YvetteFrance

Personalised recommendations