Skip to main content

Mass Spectrometric Detection of Botulinum Neurotoxin by Measuring its Activity in Serum and Milk

  • Conference paper
  • First Online:
Detection of Biological Agents for the Prevention of Bioterrorism

Abstract

Botulinum neurotoxins (BoNTs) are bacterial protein toxins which are considered likely agents for bioterrorism due to their extreme toxicity and high availability. A new mass spectrometry based assay called Endopep MS detects and defines the toxin serotype in clinical and food matrices via toxin activity upon a peptide substrate which mimics the toxin’s natural target. Furthermore, the subtype of the toxin is differentiated by employing mass spectrometry based proteomic techniques on the same sample. The Endopep-MS assay selectively detects active BoNT and defines the serotype faster and with sensitivity greater than the mouse bioassay. One 96-well plate can be analyzed in under 7 h. On higher level or “hot” samples, the subtype can then be differentiated in less than 2 h with no need for DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrero BA, Ecklung AE, Street CS, Ford DF, King JK (1967) Experimental botulism in monkeys – a clinical pathological study. Exp Mol Pathol 6:84–95

    Article  CAS  Google Scholar 

  2. Arnon SS, Schechter R, Ingelsby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole R, Parker G, Perl TM, Swerdlow PK, Tonat K (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285(8):1059–1070

    Article  CAS  Google Scholar 

  3. Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP−25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35:2630–2636

    Article  CAS  Google Scholar 

  4. Binz TJ, Blasi S, Yamasaki A, Baumeister E, Link TC, Sudhof R, Jahn R, Niemann H (1994) Proteolysis of SNAP−25 by types E and A botulinal neurotoxins. J Biol Chem 269:1617–1620

    CAS  Google Scholar 

  5. Blasi J, Chapman ER, Line E, Binz T, Yamasaki S, De Canilli P, Sudhof TC, Niemann H, Jahn R (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP−25. Nature 160–163

    Google Scholar 

  6. Schiavo G, Rossetto O, Catsicas S, Polverino De Laureto P, Dasgupta BR, Benfenati F, Montecucco C (1993) Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 268:23784–23787

    CAS  Google Scholar 

  7. Schiavo G, Santucci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, Wilson MC, Montecucco C (1993) Botulinum neurotoxins serotypes A and E cleave SNAP−25 at distinct COOH-terminal peptide bonds. FEBS Lett 335:99–103

    Article  CAS  Google Scholar 

  8. Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271:7694–7699

    Article  CAS  Google Scholar 

  9. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino De Laurento P, Dasgupta BR, Montecucco C (1992) Tetanus and botulinum B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  CAS  Google Scholar 

  10. Schiavo G, Malizio C, Trimble WS, Polverino De Laureto P, Milan G, Sugiyama H, Johnson EA, Montecucco C (1994) Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 269:20213–20216

    CAS  Google Scholar 

  11. Schiavo G, Shone CC, Rosetto O, Alexander FC, Montecucco C (1993) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 268:11516–11519

    CAS  Google Scholar 

  12. Yamasaki S, Baumeister A, Binz T, Blasi J, Link E, Cornille F, Roques B, Fykse EM, Sudhof TC, Jahn R, Niemann H (1994) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 269:12764–12772

    CAS  Google Scholar 

  13. Yamasaki S, Binz T, Hayashi T, Szabo E, Yamasaki N, Eklund M, Jahn R, Niemann H (1994) Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem Biophys Res Commun 200:829–835

    Article  CAS  Google Scholar 

  14. Blasi J, Chapman ER, Yamasaki S, Binz T, Niemann H, Jahn R (1993) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC−1/syntaxin. EMBO J 12:4821–4828

    CAS  Google Scholar 

  15. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270:10566–10570

    Article  CAS  Google Scholar 

  16. Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, McWilliams LG, Schmidt JG, Martinez RA, Ashley DL (2005) Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis 11(10):1578–1583

    CAS  Google Scholar 

  17. Boyer AE, Moura H, Woolfitt AR, Kalb SR, Pavlopoulos A, McWilliams LG, Schmidt JG, Barr JR (2005) From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal Chem 7:3916–3924

    Article  Google Scholar 

  18. Kalb SR, Moura H, Boyer AE, McWilliams LG, Pirkle JL, Barr JR (2006) The Use of Endopep-MS for the detection of botulinum neurotoxins A, B, E, and F in serum and stool samples. Anal Biochem 351(1):84–92

    Article  CAS  Google Scholar 

  19. Kalb SR, Goodnough MC, Malizio CJ, Pirkle JL, Barr JR (2005) Detection of botulinum neurotoxin A in a spiked milk sample with subtype identification through toxin proteomics. Anal Chem 77(19):6140–6146

    Article  CAS  Google Scholar 

  20. Gaunt PS, Kalb SR, Barr JR (2007) Detection of Botulinum Type E Toxin in channel catfish with visceral toxicosis syndrome using catfish bioassay and endopep mass spectrometry. J Vet Diagn Invest 19(4):349–354

    Google Scholar 

  21. Kalb SR, Smith TJ, Moura H, Hill K, Lou J, Garcia-Rodriguez C, Marks JD, Smith LA, Pirkle JL, Barr JR (2008) The Use of Endopep-MS to detect multiple subtypes of botulinum neurotoxins A, B, E, and F. Int J Mass Spec 278:101–108

    Article  CAS  Google Scholar 

  22. Kalb SR, Lou J, Garcia-Rodriguez C, Geren IN, Smith TJ, Moura H, Marks JD, Smith LA, Pirkle JL, Barr JR (2009) Extraction and inhibition of enzymatic activity of BoNT/A1, /A2, and /A3 by a panel of monoclonal anti-BoNT/A antibodies. PLoS One 4(4):5355

    Article  Google Scholar 

  23. Kautter DA, Solomon HM (1977) Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods. J Assoc Anal Chem 60:541–545

    CAS  Google Scholar 

  24. Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among Botulinum Neurotoxin-producing clostridial strains. J Bacteriol 189:818–832

    Article  CAS  Google Scholar 

  25. Szabo EA, Pemberton JM, Desmarchelier PM (1992) Specific detection of clostridium botulinum type B by using the polymerase chain reaction. Appl Environ Microbiol 58(1):418–420

    CAS  Google Scholar 

  26. Szabo EA, Pemberton JM, Desmarchelier PM (1993) Detection of the genes encoding botulinum neurotoxin types A and E by the polymerase chain reaction. Appl Environ Microbiol 59(9):3011–3020

    CAS  Google Scholar 

  27. Fach P, Hauser D, Guillou JP, Popoff MR (1993) Polymerase chain reaction for the rapid identification of Clostridium botulinum type A strains and detection in food samples. J Appl Bacteriol 75(3):234–239

    CAS  Google Scholar 

  28. Fach P, Gilbert M, Friffais R, Guillou JP, Popoff MR (1995) PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producing Clostridium spp. and evaluation in food samples. Appl Environ Microbiol 61(1):389–392

    CAS  Google Scholar 

  29. Lovenklev M, Holst E, Borch E, Radstrom P (2004) Relative neurotoxin gene expression in clostridium botulinum type B, determined using quantitative reverse transcription-PCR. Appl Environ Microbiol 70(5):2919–2927

    Article  Google Scholar 

  30. Willems A, East AK, Lawson PA, Collins MD (1993) Sequence of the gene coding for the neurotoxin of Clostridium botulinum type A associated with infant botulism: comparison with other clostridial neurotoxins. Res Microbiol 144:547–556

    Article  CAS  Google Scholar 

  31. Kalluri P, Crowe C, Reller M, Gaul L, Hayslett J, Barth S, Eliasberry S, Ferreira J, Holt K, Bengston S, Hendricks K, Sobel J (2003) An outbreak of foodborne botulism associated with food sold at a salvage store in Texas. J Clin Infect Dis 37(11):1490–1495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Barr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kalb, S.R., Pirkle, J.L., Barr, J.R. (2011). Mass Spectrometric Detection of Botulinum Neurotoxin by Measuring its Activity in Serum and Milk. In: Banoub, J. (eds) Detection of Biological Agents for the Prevention of Bioterrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9815-3_8

Download citation

Publish with us

Policies and ethics