Skip to main content

Equity Concerns About Mathematical Modelling

  • Chapter
  • First Online:
Mapping Equity and Quality in Mathematics Education
  • 2534 Accesses

Abstract

The chapter scrutinises the practice and rhetoric of mathematical modelling in primary and secondary mathematics classrooms from a sociological perspective. In classrooms, mathematical modelling tasks involve a variation of knowledge domains that can be analysed by employing the Bernsteinian notion of knowledge recontextualisation. By drawing on structurally different examples of modelling activities in mathematics classrooms, the chapter reconsiders the ways in which the recontextualisation principle connects to issues of access, control and success. The chapter also raises some issues that are related to the social emptiness of a curriculum with a focus on developing generic competencies through mathematical modelling. It is argued that descriptions of mathematical modelling without reference to the social community in which the modelling takes place, leave a vacant space that can be filled with different ideologies. This contributes to the mythologising of the educational effects of mathematical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appelbaum, P. M. (2004). Mathematics education. In J. Kincheloe & D. Weil (Eds.), Critical thinking and learning: An encyclopedia for parents and teachers (pp. 307–312). Westport: Greenwood.

    Google Scholar 

  • Bernstein, B. (1996). Pedagogy, symbolic control and identity: Theory, research, critique. London: Taylor & Francis.

    Google Scholar 

  • Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education: The 14th ICMI study. Berlin: Springer.

    Google Scholar 

  • Brown, A. (2000). Positioning, pedagogy and parental participation in school mathematics: An exploration of implications for the public understanding of mathematics. Social Epistemology, 14(1), 21–31.

    Article  Google Scholar 

  • Chouliaraki, L. (1996). Regulative practices in a ‘progressivist’ classroom: ‘Good habits’ as a disciplinary technology. Language and Education, 10(2 & 3), 103–118.

    Article  Google Scholar 

  • Cooper, B., & Dunne, M. (2000). Assessing children’s mathematical knowledge: Social class, sex and problem solving. Buckingham: Open University Press.

    Google Scholar 

  • Dowling, P. (1998). The sociology of mathematics education: Mathematical myths/pedagogical texts. London: RoutledgeFalmer.

    Google Scholar 

  • Dowling, P. (2009). Sociology as method: Departures from the forensics of culture, text and knowledge. Rotterdam: Sense.

    Google Scholar 

  • English, L. D. (2006). Mathematical modeling in the primary school: Children’s construction of a con-sumer guide. Educational Studies in Mathematics, 63(3), 303–323.

    Article  Google Scholar 

  • English, L. D., & Watters, J. J. (2005). Mathematical modeling in third-grade classrooms. Mathematics Education Research Journal, 16, 59–80.

    Article  Google Scholar 

  • Galbraith, P., Stillman, G., & Brown, J. (2006). Identifying key transition activities for enhanced engagement in mathematical modeling. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces. Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia (pp. 237–245). Adelaide: MERGA.

    Google Scholar 

  • García, F. J., & Ruiz-Higueras, L. (2010). Exploring the use of theoretical frameworks for modelling-oriented instructional design. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education: January 28th–February 1st 2009 (pp. 2166–2175). Lyon: Institut National de Recherche Pédagogique.

    Google Scholar 

  • Gellert, U., & Jablonka, E. (2009). “I am not talking about reality”: Word problems and the intricacies of producing legitimate text. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 39–53). Rotterdam: Sense.

    Google Scholar 

  • Grigoras, R., & Halverscheid, S. (2008). Modelling the travelling salesman problem: Relations between the world of mathematics and the rest of the world. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX (Vol. 3, pp. 105–112). Mexico: Cinvestav-UMSNH.

    Google Scholar 

  • Hasan, R. (2001). The ontogenesis of decontextualised language: Some achievements of classification and framing. In A. Morais, I. Neves, B. Davies, & H. Daniels (Eds.), Towards a sociology of pedagogy: The contribution of Basil Bernstein to research (pp. 47–79). New York: Peter Lang.

    Google Scholar 

  • Howson, A. G. (1989). Curriculum towards the year 2000. In J. Malone, H. Burkhardt, & C. Keitel (Eds.), The mathematics curriculum: Towards the year 2000 (pp. 13–17). Purth: Curtin University of Technology.

    Google Scholar 

  • Jablonka, E. (1996). Meta-Analyse von Zugängen zur mathematischen Modellbildung und Konsequenzen für den Unterricht. Berlin: transparent verlag.

    Google Scholar 

  • Jablonka, E. (2007). The relevance of modelling and applications: Relevant to whom and for what purpose? In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 193–200). Berlin: Springer.

    Chapter  Google Scholar 

  • Jablonka, E. (2009). Mathematics for all: Why? what? when? In C. Winsløw (Ed.), Nordic research in mathematics education (pp. 293–305). Rotterdam: Sense.

    Google Scholar 

  • Jablonka, E., & Gellert, U. (2007). Mathematisation—demathematisation. In U. Gellert & E. Jablonka (Eds.), Mathematization and de-mathematization: Social, philosophical and educational ramifications (pp. 1–18). Rotterdam: Sense.

    Google Scholar 

  • Julie, C. (2002). The activity system of school-teaching mathematics and mathematical modelling. For the Learning of Mathematics, 22(3), 29–37.

    Google Scholar 

  • Lesh, R. A., & Doerr, H. (2003). Foundations of a model & modeling perspective on mathematics teaching and learning. In R. A. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modelling (pp. 3–34). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Lubienski, S. T. (2000). A clash of social class cultures? Students’ experiences in a discussion-intensive seventh-grade mathematics classroom. The Elementary School Journal, 100(4), 377–403.

    Article  Google Scholar 

  • Moore, R., & Young, M. (2001). Knowledge and the curriculum in the sociology of education: Towards a reconceptualisation. British Journal of Sociology of Education, 22(4), 445–461.

    Article  Google Scholar 

  • Morais, A., & Miranda, C. (1996). Understanding teachers’ evaluative criteria: A condition for success in science classes. Journal of Research in Science Teaching, 33(6), 601–624.

    Article  Google Scholar 

  • Moss, G. (2000). Informal literacies and pedagogic discourse. Linguistics and Education, 11(1), 47–64.

    Article  Google Scholar 

  • Perry, B., & Dockett, S. (2008). Young children’s access to powerful mathematical ideas. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 75–108). New York: Routledge.

    Google Scholar 

  • Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4–13.

    Google Scholar 

  • Treffers, A., & Goffree, F. (1985). Rational analysis of realistic mathematics education—The Wiskobas program. In L. Streefland (Ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 97–121). Utrecht: OW&OC, Utrecht University.

    Google Scholar 

  • van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9–35.

    Article  Google Scholar 

  • Zbiek, R. M., & Conner, A. (2006). Beyond motivation: Exploring mathematical modeling as a context for deepening students’ understandings of curricular mathematics. Educational Studies in Mathematics, 63(1), 98–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Jablonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jablonka, E., Gellert, U. (2010). Equity Concerns About Mathematical Modelling. In: Atweh, B., Graven, M., Secada, W., Valero, P. (eds) Mapping Equity and Quality in Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9803-0_16

Download citation

Publish with us

Policies and ethics