Constraining the Initiation and Early Evolution of CMEs with SECCHI on STEREO

  • Spiros Patsourakos
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 4)


One of the major objectives of the STEREO mission is to understand how and where Coronal Mass Ejections (CMEs) are accelerated. We review here the status of our knowledge from SECCHI CME observations in the period 2007–2009 about various topics concerned with the early stages of CMEs. This includes: impulsively accelerated CMEs, the flare-CME relationship, EUV dimmings, EUV waves and eruptive prominences. We will show how the unique characteristics of this mission and most importantly the distinct viewpoints and the high image cadence allowed for significant progress in the above mentioned areas. We also discuss potential future uses of SECCHI data.


High Cadence Extreme Ultraviolet Image Telescope Acceleration Profile Magnetic Flux Rope Stereo Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I’m grateful to my colleagues Angelos Vourlidas, Eva Robbrecht, Bernhard Kliem, Yi-Ming Wang, Arnaud Thernisien and Guillermo Stenborg for many discussions on various topics discussed here. I wish to thank the organizers of the IAGA 2009 meeting and Kuen Ko in particular for giving me the opportunity to give this chapter. Special thanks go the referee for helpful comments/suggestions. The SECCHI data used here were produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max−Planck−Institute for Solar System Research (Germany), Centre Spatiale de Lièege (Belgium), Institut d Optique Théorique et Appliqueé (France), and Institut dAstrophysique Spatiale (France).


  1. Aschwanden MJ, Wuelser JP, Nitta NV, Lemen JR (2009a) Solar flare and CME observations with STEREO/EUVI. Solar Phys 256:3–40CrossRefGoogle Scholar
  2. Aschwanden MJ, Nitta NV, Wuelser J, Lemen JR, Sandman A, Vourlidas A, Colaninno RC (2009b) First measurements of the mass of coronal mass ejections from the EUV dimming observed with stereo EUVI A and B spacecraft. Astrophys J 706:376–392CrossRefGoogle Scholar
  3. Attrill GDR, Harra LK, van Driel-Gesztelyi L, Démoulin P. (2007a) Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys J 656:L101–L104.CrossRefGoogle Scholar
  4. Attrill GDR, Harra LK, van Driel-Gesztelyi L, Démoulin P, Wüslser J-P (2007b) Coronal “wave”: a signature of the mechanism making CMEs large-scale in the low corona? Astron Nachr 328:760–763CrossRefGoogle Scholar
  5. Attrill GDR, Engell AJ, Wills-Davey MJ, Grigis P, Testa P (2009). Hinode/XRT and STEREO observations of a diffuse coronal “wave”-coronal mass ejection-dimming event. Astrophys J 704:1296–1308.CrossRefGoogle Scholar
  6. Bemporad A (2009) Stereoscopic reconstruction from STEREO/EUV imagers data of the three-dimensional shape and expansion of an erupting prominence. Astrophys J 701:298–305.CrossRefGoogle Scholar
  7. Bewsher D, Harrison RA, Brown DS (2008) The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron Astrophys 478:897–906CrossRefGoogle Scholar
  8. Cheng X, Ding MD, Zhang J (2010) A study of the build-up, initiation, and acceleration of 2008 April 26 coronal mass ejection observed by STEREO. Astrophys J 712:1302–1310CrossRefGoogle Scholar
  9. Cohen O, Attrill GDR, Manchester WB, Wills-Davey MJ (2009) Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys J 705:587–602CrossRefGoogle Scholar
  10. Colaninno RC, Vourlidas A (2009) First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys J 698:852–858CrossRefGoogle Scholar
  11. Dai Y, Auchère F, Vial J-C, Tang YH, Zong WG (2010) Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection. Astrophys J 708:913–919CrossRefGoogle Scholar
  12. Delannée C (2000) Another view of the EIT wave phenomenon. Astrophys J 545:512–523CrossRefGoogle Scholar
  13. Delannée C, Török T, Aulanier G, Hochedez J-F (2008) A new model for propagating parts of EIT waves: a current shell in a CME. Solar Phys 247:123–150CrossRefGoogle Scholar
  14. Gissot SF, Hochedez J-F, Chainais P, Antoine J-P (2008) 3D reconstruction from SECCHI-EUVI images using an optical-flow algorithm: method description and observation of an erupting filament. Solar Phys 252:397–408CrossRefGoogle Scholar
  15. Gopalswamy N, Yashiro S, Temmer M, Davila J, Thompson WT, Jones S, McAteer RTJ, Wuelser J-P, Freeland S, Howard RA (2009) EUV wave reflection from a coronal hole. Astrophys J 691:L123–L127CrossRefGoogle Scholar
  16. Howard RA et al (2008) Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci Rev 136:67–115CrossRefGoogle Scholar
  17. Kaiser ML, Kucera TA, Davila JM, St Cyr, OC, Guhathakurta M, Christian E (2008) The STEREO mission: an introduction. Space Sci Rev 136:5–16CrossRefGoogle Scholar
  18. Kienreich IW, Temmer M, Veronig AM (2009) STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys J 703:118–122CrossRefGoogle Scholar
  19. Krucker S, Hudson HS, Glesener L, White SM, Masuda S, Wuelser J-P, Lin RP (2010) Measurements of the Coronal acceleration region of a solar flare. Astrophys J 714:1108CrossRefGoogle Scholar
  20. Li Y, Lynch BJ, Stenborg G, Luhmann JG, Huttunen KEJ,Welsch BT, Liewer PC, Vourlidas A (2008). The solarmagnetic field and coronal dynamics of the eruption on 2007 May 19. Astrophys J 681:L37–L40CrossRefGoogle Scholar
  21. Liewer PC, de Jong EM, Hall JR, Howard RA, Thompson WT, Culhane JL, Bone L, van Driel-Gesztelyi L (2009) Stereoscopic analysis of the 19 May 2007 erupting filament. Solar Phys 256:57–72CrossRefGoogle Scholar
  22. Long DM, Gallagher PT, McAteer RTJ, Bloomfield DS (2008) The kinematics of a globally propagating disturbance in the solar corona. Astrophys J 680:L81–L84CrossRefGoogle Scholar
  23. Lynch BJ, Antiochos SK, Li Y, Luhmann JG, DeVore CR (2009) Rotation of coronal mass ejections during eruption. Astrophys J 697:1918–1927CrossRefGoogle Scholar
  24. Ma S, Wills-Davey MJ, Lin J, Chen PF, Attrill GDR, Chen H, Zhao S, Li Q, Golub L (2009). A new view of coronal waves from STEREO. Astrophys J 707:503–509CrossRefGoogle Scholar
  25. Patsourakos S, Vourlidas A, Wang YM, Stenborg G, Thernisien A (2009a) What is the nature of EUV waves? First STEREO 3D observations and comparison with theoreticalmodels. Solar Phys 259:49–71CrossRefGoogle Scholar
  26. Patsourakos S, Vourlidas A (2009b). “Extreme ultraviolet waves” arewaves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys J 700:182–186CrossRefGoogle Scholar
  27. Patsourakos S, Vourlidas A, Kliem B (2010) Toward understanding the early stages of an impulsively accelerated coronal mass ejection. Astron and Astrophys, in press, available on-line in
  28. Pick M, et al (2006) Multi-wavelength observations of CMEs and associated phenomena. report of working group F. Space Scie Rev 123:341–382CrossRefGoogle Scholar
  29. Reinard AA, Biesecker DA (2009) The relationship between coronal dimming and coronal mass ejection properties. Astrophys J 705:914–919CrossRefGoogle Scholar
  30. Robbrecht E, Patsourakos S, Vourlidas A (2009) No trace left behind: STEREO observation of a coronalmass ejectionwithout low coronal signatures. Astrophys J 701:283–291CrossRefGoogle Scholar
  31. Schwenn R et al (2006) Coronal observations of CMEs. Report of working group A. Space Sci Rev 123:127–176CrossRefGoogle Scholar
  32. Temmer M, Veronig AM, Kontar EP, Krucker S, Vrsnak B (2010) Combined STEREO/RHESSI study of CME acceleration and particle acceleration in solar flares. Astrophys J 712:1410–1420CrossRefGoogle Scholar
  33. Thernisien A, Vourlidas A, Howard RA (2009) Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys 256:111–130CrossRefGoogle Scholar
  34. Thompson BJ, Plunkett SP, Gurman JB, Newmark JS, St Cyr OC, Michels DJ (1998) SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys Res Lett 25:2465–246Google Scholar
  35. Thompson BJ, Gurman JB, Neupert WM, Newmark JS, Delaboudinière J-P, St Cyr OC, Stezelberger S, Dere KP, Howard RA, Michels DJ (1999) SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal moretonwaves. Astrophys J 517:L151–L154CrossRefGoogle Scholar
  36. Thompson WT, et al (2003) COR1 inner coronagraph for STEREOSECCHI. society of Photo-Optical Instrumentation Engineers (SPIE) Conference series 4853, 1–11Google Scholar
  37. Thompson WT, Kliem B, Toeroek T (2009) 3D reconstruction of an erupting prominence. AAS/Solar Physics Division Meeting 40, #21.11Google Scholar
  38. Vásquez AM, Frazin RA, Kamalabadi F (2009) 3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: analysis of prominence cavities. Solar Phys 256:73–85CrossRefGoogle Scholar
  39. Veronig AM, Temmer M, Vrşnak B (2008) High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys J 681:L113–L116CrossRefGoogle Scholar
  40. Verwichte E, Aschwanden MJ, Van Doorsselaere T, Foullon C, Nakariakov VM (2009) Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation. Astrophys J 698:397–404CrossRefGoogle Scholar
  41. Wuelser J-P et al (2004) EUVI: the STEREO-SECCHI extreme ultraviolet imager. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference series 5171, 111–122Google Scholar
  42. Wills-Davey MJ, Attrill GDR (2009) EIT waves: a changingunderstanding over a solar cycle. Space Sci Rev 149:325–353CrossRefGoogle Scholar
  43. Wills-Davey MJ, DeForest CE, Stenflo JO (2007) Are “EIT waves” fast-mode MHD waves?. Astrophys J 664:556–562CrossRefGoogle Scholar
  44. Zhang J, Dere KP, Howard RA, Kundu MR, White SM (2001) On the temporal relationship between coronal mass ejections and flares. Astrophys J 559:452–462CrossRefGoogle Scholar
  45. Zhukov AN, Auchère F (2004) On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron Astrophys 427:705–716CrossRefGoogle Scholar
  46. Zhukov AN, Rodriguez L, de Patoul J (2009) STEREO/SECCHI observations on 8 December 2007: evidence against the wave hypothesis of the EIT wave origin. Solar Phys 259:73–85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Physics, Section of GeophysicsUniversity of IoanninaIoanninaGreece

Personalised recommendations