Theories of the Solar Cycle : A Critical View

  • Hendrik C. Spruit
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 4)


Some established views of the solar magnetic cycle are discussed critically, with focus on two aspects at the core of most models: the role of convective turbulence, and the role of the “tachocline” at the base of the convection zone. The standard view which treats the solar cycle as a manifestation of the interaction between convection and magnetic fields is shown to be misplaced. The main ingredient of the solar cycle, apart from differential rotation, is instead buoyant instability of the magnetic field itself. This view of the physics of the solar cycle was already established in the 1950s, but has been eclipsed mathematically by mean field turbulence formalisms which make poor contact with observations and have serious theoretical problems. The history of this development in the literature is discussed critically. The source of the magnetic field of the solar cycle is currently assumed to be located in the “tachocline”: the shear zone at the base of the convection zone. While the azimuthal field of the cycle is indeed most likely located at the base of the convection zone, it cannot be powered by the radial shear of the tachocline as assumed in these models, since the radiative interior does not support significant shear stresses. Instead, it must be the powered by the latitudinal gradient in rotation rate in the convection zone, as in early models of the solar cycle. Possible future directions for research are briefly discussed.


Active Region Solar Cycle Convection Zone Differential Rotation Toroidal Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altrock RC (2010) arXiv:1002.2401Google Scholar
  2. Babcock HW (1961) ApJ 133:1049CrossRefGoogle Scholar
  3. Babcock HW (1963) Ann Rev Astron Astrophys 1:41CrossRefGoogle Scholar
  4. Brandenburg A (2005) ApJ 625:539CrossRefGoogle Scholar
  5. Brandenburg A (2009) Plasma Phys Control Fusion 51:124043CrossRefGoogle Scholar
  6. Brandenburg A (2010) MNRAS 401:347CrossRefGoogle Scholar
  7. Brandenburg A, Kleeorin N, Rogachevskii I (2010) Astron Nachr 331:5CrossRefGoogle Scholar
  8. Caligari P, Moreno-Insertis F, Schussler M (1995) ApJ 441:886CrossRefGoogle Scholar
  9. Cattaneo F (1999) ApJ 515:L39CrossRefGoogle Scholar
  10. Cattaneo F, Hughes DW (2009) MNRAS 395:L48CrossRefGoogle Scholar
  11. Charbonneau P (2005) Living Rev Solar Phys, http://
  12. Cheung MCM, Schüssler M, Tarbell TD, Title AM (2008) ApJ 687:1373CrossRefGoogle Scholar
  13. Cowling TG (1953) In: Kuiper, G (ed) The sun. University of Chicago Press, Chicago, IL,  Chapter 8 Google Scholar
  14. Deforest CE, Lamb DA, Berger T, Hagenaar H, Parnell C, Welsch B (2008) AGU Spring Meeting Abstracts, 1Google Scholar
  15. Dikpati M (2006), Adv Space Res 38:839CrossRefGoogle Scholar
  16. D’Silva S, Choudhuri AR (1993) A&A 272:621Google Scholar
  17. Durney BR, De Young DS, Roxburgh IW (1993) Sol Phys 145:207CrossRefGoogle Scholar
  18. Elsasser WM (1956) Rev Mod Phys 28:135CrossRefGoogle Scholar
  19. Fan Y, Fisher GH, McClymont AN (1994) ApJ 436:907CrossRefGoogle Scholar
  20. Forgács-Dajka E, Petrovay K (2001) Sol Phys 203:195CrossRefGoogle Scholar
  21. Galloway DJ, Weiss NO (1981) ApJ 243:945CrossRefGoogle Scholar
  22. Gilman PA (2005) Astron Nachr 326:208CrossRefGoogle Scholar
  23. Hawley JF, Gammie CF, Balbus SA (1996) ApJ 464:690CrossRefGoogle Scholar
  24. Heinemann T, Nordlund Å, Scharmer GB, Spruit HC (2007) ApJ 669:1390CrossRefGoogle Scholar
  25. Herdiwijaya D, Makita M, Anwar B (1997) Pub Astron Soc Jpn 49:235Google Scholar
  26. Howe R (2009) Living Rev Solar Phys 6:1, arXiv:0902.2406Google Scholar
  27. Jones CA, Thompson MJ, Tobias SM (2009) Space Sci Rev 152, 591. doi:10.1007/s11214-009-9579-5CrossRefGoogle Scholar
  28. Kitiashvili IN, Kosovichev AG, Wray AA, Mansour NN (2010) ApJ 719:307, arXiv:1004.2288v1CrossRefGoogle Scholar
  29. Leighton RB (1969) ApJ 156:1CrossRefGoogle Scholar
  30. Leroy JL, Trellis M (1974) A&A 35:283Google Scholar
  31. Martin SF (1988) Sol Phys 117:243CrossRefGoogle Scholar
  32. McIntyre ME (2007) In: Hughes DW et al (eds) The solar tachocline. CUP, Cambridge, p 183CrossRefGoogle Scholar
  33. Meyer F, Schmidt HU, Wilson PR, Weiss NO (1974) MNRAS 169:35Google Scholar
  34. Moreno-Insertis F (1986) A&A 166:291Google Scholar
  35. Parker EN (1955) ApJ 122:193CrossRefGoogle Scholar
  36. Parker EN (1979) Cosmical magnetic fields. Clarendon Press, OxfordGoogle Scholar
  37. Parker EN (1993) ApJ 408:707CrossRefGoogle Scholar
  38. Parker EN (2009) Space Sci Rev 144:15CrossRefGoogle Scholar
  39. Pietarila Graham J, Danilovic S, Schüssler M (2009) ApJ 693:1728CrossRefGoogle Scholar
  40. Proctor MRE, Weiss NO (1982) Rep Prog Phys 45:1317CrossRefGoogle Scholar
  41. Rempel M, Schüssler M, Cameron RH, Knölker M (2009) Science 325:171CrossRefGoogle Scholar
  42. Rüdiger G, Hollerbach R (2004) The magnetic universe : geophysical and astrophysical dynamo theory. Wiley-VCH, WeinheimGoogle Scholar
  43. Scharmer GB, Nordlund Å, Heinemann T (2008) ApJ 677:L149CrossRefGoogle Scholar
  44. Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC (2004) ApJ 612:276CrossRefGoogle Scholar
  45. Schüssler M (2008) 12th European solar physics meeting, Freiburg, Germany, held 8–12 September 2008. Online at, p 1.1, 12, 1
  46. Schüssler M, Caligari P, Ferriz-Mas A, Moreno-Insertis F (1994) A&A 281:L69Google Scholar
  47. Spiegel EA, Zahn J-P (1992) A&A 265:106Google Scholar
  48. Spruit HC (1977) Sol Phys 55:3CrossRefGoogle Scholar
  49. Spruit HC (2002) A&A 381:923CrossRefGoogle Scholar
  50. Spruit HC, Roberts B (1983) Nature 304:401CrossRefGoogle Scholar
  51. Steenbeck M, Krause F, Rädler K-H (1966) Z Naturforsch A 21:369Google Scholar
  52. Strous LH, Scharmer G, Tarbell TD, Title AM, Zwaan C (1996) A&A 306:947Google Scholar
  53. Tarbell T., Ferguson, S., Frank, Z., Shine, R., Title, A., Topka, K., & Scharmer, G. (1990). IAU Symp 138:147Google Scholar
  54. Tobias S (2005) Advances in astronomy. In: Thompson JMT (ed). Royal Society series on advances in science, vol 1. Imperial College Press, London, p 355Google Scholar
  55. Tobias SM (2009) Space Sc Rev 144:77CrossRefGoogle Scholar
  56. van Ballegooijen AA (1982) A&A 113:99Google Scholar
  57. Vrabec D (1974) In: Athay RG (ed) Chromospheric fine structure, IAU Symp. Reidel, Dordrecht 56, p 221Google Scholar
  58. Weiss NO (1964) MNRAS 128:225Google Scholar
  59. Weiss NO (1981) JGR 86:11689CrossRefGoogle Scholar
  60. Weiss NO (1989) ASSL 156: Accretion disks and magnetic fields in astrophysics, p 11Google Scholar
  61. Weiss NO (1993) ASSL 183: Physics of Solar and Stellar Coronae, p 541Google Scholar
  62. Weiss NO (1994) In: Proctor MRE, Gilbert AD (eds) Lectures on solar and planetary dynamos, ISBN 0 521 46142 1 and ISBN 0 521 46704 7. Cambridge University Press, Cambridge, p 59CrossRefGoogle Scholar
  63. Weiss NO (1997) In: Castagnoli G, Provenzale A (eds) Past and present variability of the solar-terrestrial system, “Enrico Fermi”: course CXXXIII. IOS, Oxford, p 325Google Scholar
  64. Zwaan C (1978) Sol Phys 60:213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Max Planck Institute for AstrophysicsGarchingGermany

Personalised recommendations