MHD Simulations of the Global Solar Corona and the Solar Wind

  • Roberto Lionello
  • Jon A. Linker
  • Zoran Mikić
  • Pete Riley
  • Viacheslav S. Titov
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 4)


We describe the latest applications of our global three-dimensional magnetohydrodynamic (MHD) model of the solar corona and the solar wind. The model uses boundary conditions based on observed photospheric magnetic fields. It has been used in the simplified, “polytropic” approximation of the energy equation to study the geometrical and topological properties of the magnetic field (e.g., the location and evolution of corona holes, the reproduction of streamer structure, the location of the heliospheric current sheet). However, this approximation does not reproduce the density and temperature contrasts between open and closed-field regions and does not address data from EUV and X-ray emission. Our improved MHD model that includes energy transport (radiative losses, anisotropic thermal conduction, and coronal heating) in the transition region and solar corona is capable of reproducing many emission properties as observed by SoHO and Hinode.


Solar Wind Coronal Hole Solar Eclipse Heliospheric Current Sheet Slow Solar Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antiochos SK, DeVore CR, Karpen JT, Mikić Z (2007) Structure and dynamics of the Sun’s open magnetic field. ApJ 671:936–946. doi:10.1086/522489CrossRefGoogle Scholar
  2. Cohen O, Sokolov IV, Roussev II, Arge CN, Manchester WB, Gombosi TI, Frazin RA, Park H, Butala MD, Kamalabadi F, Velli M (2007) A semiempirical magnetohydrodynamical model of the solar wind. ApJ 654:L163–L166. doi:10.1086/511154CrossRefGoogle Scholar
  3. Crooker NU, Gosling JT, Kahler SW (2002a) Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J Geophys Res (Space Phys) 107:3–1Google Scholar
  4. Crooker NU, Gosling JT, Kahler SW (2002b) Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J Geophys Res (Space Phys) 107:1028–. doi:10.1029/2001JA000236CrossRefGoogle Scholar
  5. Crooker NU, Larson DE, Kahler SW, Lamassa SM, Spence HE (2003) Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts. Geophys. Res. Lett.30(12):21-1 to 21-4 1619. doi:10.1029/2003GL017036CrossRefGoogle Scholar
  6. Fisk LA, Zurbuchen TH, Schwadron NA (1999) On the coronal magnetic field: consequences of large-scalemotions. ApJ 521:868–877CrossRefGoogle Scholar
  7. Jacques SA (1977) Momentum and energy transport bywaves in the solar atmosphere and solar wind. ApJ 215:942–951CrossRefGoogle Scholar
  8. Klimchuk JA (2006) On solving the coronal heating problem. Sol Phys 234:41–77. doi:10.1007/s11207-006-0055-zCrossRefGoogle Scholar
  9. Linker JA, Mikić Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ (1999) Magnetohydrodynamicmodeling of the solar corona during Whole Sun Month. J Geophys Res 104:9809–9830CrossRefGoogle Scholar
  10. Lionello R, Linker JA, Mikić Z (2001) Including the transition region in models of the large-scale solar corona. ApJ 546:542–551CrossRefGoogle Scholar
  11. Lionello R, Linker JA, Mikić Z (2009) Multispectral emission of the Sun during the first Whole Sun Month: magnetohydrodynamic simulations. ApJ 690:902–912. doi:10.1088/0004-637X/690/1/902CrossRefGoogle Scholar
  12. Lundquist LL, Fisher GH, McTiernan JM, Régnier S (2004) In: Walsh RW, Ireland J, Danesy D, Fleck B (eds) Using synthetic emission images to constrain heating parameters. ESA SP-575: SOHO 15 coronal heating. ESA, Noordwijk, pp 306–Google Scholar
  13. Mikić Z, Linker JA (1996) The large-scale structure of the solar corona and inner heliosphere. In: Winterhalter D, Gosling JT, Habbal SR, Kurth WS, Neugebauer M (eds) Solarwind eight, Proceedings of the eighth international solarwind conference, American Institute of Physics conference proceedings 382. American Institute of Physics, Woodbury, New York, 1996, pp 104–107Google Scholar
  14. Mikić Z, Linker JA, Schnack DD, Lionello R, Tarditi A (1999) Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas 6:2217–2224CrossRefGoogle Scholar
  15. Owens MJ, Crooker NU (2007) Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget. J Geophys Res (Space Phys) 112:6106–+. doi:10.1029/2006JA012159CrossRefGoogle Scholar
  16. Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG (2006) A comparison between global solar magnetohydrodynamic and potential field source surfacemodel results. ApJ 653:1510–1516. doi:10.1086/508565CrossRefGoogle Scholar
  17. Roussev II, Gombosi TI, Sokolov IV, Velli M, Manchester W IV, DeZeeuw DL, Liewer P, Tóth G, Luhmann J (2003) A Three-dimensional model of the solar wind incorporating solar magnetogram observations. ApJ 595:L57–L61. doi:10.1086/378878CrossRefGoogle Scholar
  18. Titov VS (2007) Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. ApJ 660:863–873. doi:10.1086/512671CrossRefGoogle Scholar
  19. Usmanov AV (1993) A global numerical 3-D MHD model of the solar wind. Sol Phys 146:377–396CrossRefGoogle Scholar
  20. Usmanov AV (1995) A global 3-DMHD model of the solar wind with Alfven waves. In: Solar wind conference, pp 65–+Google Scholar
  21. Warren HP, Winebarger AR (2006) Hydrostatic modeling of the integrated soft X-Ray and extreme ultraviolet emission in solar active regions. ApJ 645:711–719. doi:10.1086/504075CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Roberto Lionello
    • 1
  • Jon A. Linker
    • 1
  • Zoran Mikić
    • 1
  • Pete Riley
    • 1
  • Viacheslav S. Titov
    • 1
  1. 1.Predictive Science, Inc.San DiegoUSA

Personalised recommendations