Skip to main content

Role of CD9 in Sperm-Egg Fusion and Its General Role in Fusion Phenomena

  • Chapter
  • First Online:
Cell Fusions

Abstract

In fertilization, two types of sex cells or gametes – a sperm and an egg – unite in a stepwise manner to form a mother cell, which is capable of developing naturally into a new individual. Notably, the “membrane fusion” that occurs intercellularly between a sperm and an egg is essential for fertilization. A sperm factor that is delivered into the egg cytoplasm through fusion serves to activate a signaling pathway; this leads to the resumption of meiosis in the egg. In mammals, sperm-egg fusion is partly mediated by two integral membrane proteins, sperm Izumo (Inoue et al. 2005) and egg cluster of differentiation 9 (CD9) (Kaji et al. 2000, Le Naour et al. 2000, Miyado et al. 2000), and the roles played by both are critical but yet unknown. A recent study (Miyado et al. 2000) showed that CD9-containing vesicles are released from wild-type eggs, and that these exosome-like vesicles induce fusion between sperm and CD9-null eggs in vitro, even though CD9-null eggs are highly refractory to sperm-egg fusion. This result provides compelling evidence for the crucial involvement of CD9-containing, fusion-facilitating vesicles in sperm-egg fusion and offers new insight into both gamete fusion and other membrane fusion events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADAM:

A disintegrin and metalloprotease

CD:

Cluster of differentiation

GM3:

Monosialo ganglioside 3

EGFP:

Enhanced green fluorescent protein

HIV:

Human immunodeficiency virus

HSP:

Heat shock protein

ICSI:

Intracytoplasmic sperm injection

LEL:

Large extracellular loop

MRP-1:

Motility-related protein 1

M:

Microvilli

PVS:

Perivitelline space

Tspan:

Tetraspanin

Z:

Zona pellucida

References

  • Akutsu H, Miura T, Machida M et al (2009) Maintenance of pluripotency and self-renewal ability of mouse embryonic stem cells in the absence of tetraspanin CD9. Differentiation 78:137–142

    Article  CAS  PubMed  Google Scholar 

  • Almeida EA, Huovila AP, Sutherland AE et al (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Andre M, Morelle W, Planchon S et al (2007) Glycosylation status of the membrane protein CD9P-1. Proteomics 7:3880–3895

    Article  CAS  PubMed  Google Scholar 

  • Barraud-Lange V, Naud-Barriant N, Bomsel M et al (2007) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J 21:3446–3449

    Article  CAS  PubMed  Google Scholar 

  • Blobel CP, Wolfsberg TG, Turck CW et al (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252

    Article  CAS  PubMed  Google Scholar 

  • Charrin S, Le Naour F, Labas V et al (2003) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373:409–421

    Article  CAS  PubMed  Google Scholar 

  • Chen MS, Tung KS, Coonrod SA et al. (1999) Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci USA 96:11830–11835

    Article  CAS  PubMed  Google Scholar 

  • Chiu WH, Chandler J, Cnops G et al (2007) Mutations in the TORNADO2 gene affect cellular decisions in the peripheral zone of the shoot apical meristem of Arabidopsis thaliana. Plant Mol Biol 63:731–744

    Article  CAS  PubMed  Google Scholar 

  • Clergeot PH, Gourgues M, Cots J et al (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968

    Article  CAS  PubMed  Google Scholar 

  • Couzin J (2005) Cell biology: the ins and outs of exosomes. Science 308:1862–1863

    Article  CAS  PubMed  Google Scholar 

  • Dandekar P, Aggeler J, Talbot P (1992) Structure, distribution and composition of the extracellular matrix of human oocytes and cumulus masses. Hum Reprod 7:391–398

    CAS  PubMed  Google Scholar 

  • Evans JP (2001) Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 23:628–639

    Article  CAS  PubMed  Google Scholar 

  • Garcia E, Pion M, Pelchen-Matthews A et al (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488–501

    Article  CAS  PubMed  Google Scholar 

  • He ZY, Brakebusch C, Fassler R et al (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev Biol 254:226–237

    Article  CAS  PubMed  Google Scholar 

  • Hemler ME (2008) Targeting of tetraspanin proteins–potential benefits and strategies. Nat Rev Drug Discov 7:747–758

    Article  CAS  PubMed  Google Scholar 

  • Hernandez LD, Hoffman LR, Wolfsberg TG et al (1996) Virus-cell and cell–cell fusion. Annu Rev Cell Dev Biol 12:627–661

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Yuan S, Dong M et al (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell–cell interactions from unicellular to multicellular organisms. Genomics 86:674–684

    Article  CAS  PubMed  Google Scholar 

  • Inoue N, Ikawa M, Isotani A et al (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112: 519–533

    Article  CAS  PubMed  Google Scholar 

  • Kaji K, Oda S, Miyazaki S et al (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247:327–334

    Article  CAS  PubMed  Google Scholar 

  • Kaji K, Oda S, Shikano T et al (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282

    Article  CAS  PubMed  Google Scholar 

  • Kesimer M, Scull M, Brighton B et al (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23:1858–1868

    Article  CAS  PubMed  Google Scholar 

  • Kopczynski CC, Davis GW, Goodman CS (1996) A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science 271:1867–1870

    Article  CAS  PubMed  Google Scholar 

  • Lambou K, Tharreau D, Kohler A et al (2008) Fungi have three tetraspanin families with distinct functions. BMC Genomics 9:63

    Article  PubMed  Google Scholar 

  • Le Naour F, Andre M, Boucheix C et al (2006) Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6:6447–6454

    Article  PubMed  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C et al (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    Article  PubMed  Google Scholar 

  • Mi S, Lee X, Li X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  • Miller BJ, Georges-Labouesse E, Primakoff P et al (2000) Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J Cell Biol 149:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Miyado K, Yamada G, Yamada S et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    Article  CAS  PubMed  Google Scholar 

  • Miyado K, Yoshida K, Yamagata K et al (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105:12921–12926

    Article  CAS  PubMed  Google Scholar 

  • Miyake M, Koyama M, Seno M et al (1991) Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility. J Exp Med 174:1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Moribe H, Yochem J, Yamada H et al (2004) Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. J Cell Sci 117:5209–5220

    Article  CAS  PubMed  Google Scholar 

  • Okabe M, Cummins JM (2007) Mechanisms of sperm–egg interactions emerging from gene-manipulated animals. Cell Mol Life Sci 64:1945–1958

    Article  CAS  PubMed  Google Scholar 

  • Rosen GD, Sanes JR, LaChance R et al (1992) Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69:1107–1119

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein E, Ziyyat A, Prenant M et al (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358

    Article  CAS  PubMed  Google Scholar 

  • Runge KE, Evans JE, He ZY et al (2007) Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304:317–325

    Article  CAS  PubMed  Google Scholar 

  • Saunders CM, Larman MG, Parrington J et al (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129:3533–3544

    CAS  PubMed  Google Scholar 

  • Shigeta M, Sanzen N, Ozawa M et al (2003) CD151 regulates epithelial cell–cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol 163:165–176

    Article  CAS  PubMed  Google Scholar 

  • Silvie O, Rubinstein E, Franetich JF et al (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9:93–96

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    Article  CAS  PubMed  Google Scholar 

  • Tachibana I, Hemler ME (1999) Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J Cell Biol 146:893–904

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y, He P, Tachibana I et al (2008) Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem 283:26089–26097

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y, Tachibana I, Miyado K et al (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161:945–956

    Article  CAS  PubMed  Google Scholar 

  • Talbot P, DiCarlantonio G (1984) Ultrastructure of opossum oocyte investing coats and their sensitivity to trypsin and hyaluronidase. Dev Biol 103:159–167

    Article  CAS  PubMed  Google Scholar 

  • Tanigawa M, Miyamoto K, Kobayashi S et al (2008) Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol Reprod Dev 75:150–155

    Article  PubMed  Google Scholar 

  • Todres E, Nardi JB, Robertson HM (2000) The tetraspanin superfamily in insects. Insect Mol Biol 9:581–590

    Article  CAS  PubMed  Google Scholar 

  • Toshimori K, Saxena DK, Tanii I et al (1998) An MN9 antigenic molecule, equatorin, is required for successful sperm-oocyte fusion in mice. Biol Reprod 59:22–29

    Article  CAS  PubMed  Google Scholar 

  • Trams EG, Lauter CJ, Salem N et al (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645:63–70

    Article  CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • Veneault-Fourrey C, Parisot D, Gourgues M et al (2005) The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum. Fungal Genet Biol 42:306–318

    Article  CAS  PubMed  Google Scholar 

  • Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci USA 103:738–743

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Tamura Y, Sanzen N et al (2008) Probing the interaction of tetraspanin CD151 with integrin alpha 3 beta 1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin alpha 3 beta 1 complex. Biochem J 415:417–427

    Article  CAS  PubMed  Google Scholar 

  • Zhu GZ, Miller BJ, Boucheix C et al (2002) Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129:1995–2002

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Masaru Okabe, Dr. Kiyotaka Toshimori, Dr. Chizuru Ito, Dr. Naokazu Inoue, and Dr. Eisuke Mekada for their critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Miyado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kawano, N., Harada, Y., Yoshida, K., Miyado, M., Miyado, K. (2011). Role of CD9 in Sperm-Egg Fusion and Its General Role in Fusion Phenomena. In: Larsson, LI. (eds) Cell Fusions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9772-9_7

Download citation

Publish with us

Policies and ethics