Cell Fusions pp 395-426 | Cite as

Cell–Cell Fusions and Human Endogenous Retroviruses in Cancer

  • Reiner Strick
  • Matthias W. Beckmann
  • Pamela L. Strissel
Chapter

Abstract

The overall focus of this review is the characterization and functional role of cell–cell fusions in connection with human endogenous retroviruses (HERV) in cancer. Examples of multinucleated cells presented include placental syncytiotrophoblasts, muscle myotubes, bone osteoclasts involved in normal human development and cell–cell fusions detected in tumors. Examples of multinucleated cells in various cancers include germ cell tumors, glioblastoma, melanoma, lung, breast, ovarian and endometrial carcinomas. The role of different HERV-envelope proteins mediating fusion or regulation of cells in tumors is highlighted. Although multinucleated cells are detected in various tumors, their origin, functional role and overall cellular fate are ambiguous. The effect of multiple cancer cells fusing and in contrast cancer cells fusing with somatic cells is also discussed. Understanding tumorigenesis has to ultimately link the knowledge between the function and action of multinucleated cells, cell fusion, HERVs, retroviruses and cell signalling pathways.

Keywords

Cancer cell-cell fusions HERV multinucleated cells polyploidy retrovirus syncytin virus 

Abbreviations

ASCT

Alanine, serine and cysteine selective transporters

BMD

Bone marrow derived

BMDC

Bone marrow derived cells

CD

Cluster of differentiation

eff-1

Epithelial fusion failure 1

EM

Electron microscopy

env

Envelope

gag

Group-specific antigen

HA

Hemagglutinin

HELLP

Hemolysis elevated liver enzymes low platelet count

HERV

Human endogenous retrovirus

HIV

Human immune deficiency virus

HTLV

Human T-cell lymphotropic virus

IF

Immunofluorescence

IHC

Immunohistochemistry

IUGR

Intrauterine growth restriction

MFSD2

Major facilitator superfamily domain containing 2

MSRV

Multiple sclerosis retrovirus

PE

Pre-eclampsia

Pol

Polymerase

RIA

Radioimmunoassay

RNAi

RNA interference

SU

Surface unit

TGF

Transforming growth factor

TM

Transmembrane unit

References

  1. Ahn K, Kim HS (2009) Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 28:99–103PubMedCrossRefGoogle Scholar
  2. Aichel O (1911) Über Zellverschmelzung mit qualitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. Wilhelm Engelmann, LeipzigGoogle Scholar
  3. Akatsu T, Kameyama K, Kawachi S et al (2006) Gallbladder carcinoma with osteoclast-like giant cells. J Gastroenterol 41:83–87PubMedCrossRefGoogle Scholar
  4. Albores-Saavedra J, Wu J (2006) The many faces and mimics of papillary thyroid carcinoma. Endocr Pathol 17:1–18PubMedCrossRefGoogle Scholar
  5. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7782PubMedCrossRefGoogle Scholar
  6. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973PubMedCrossRefGoogle Scholar
  7. Alves PM, Lévy N, Stevenson BJ et al (2008) Identification of tumor-associated antigens by large-scale analysis of genes expressed in human colorectal cancer. Cancer Immunol 8:11Google Scholar
  8. An DS, Xie YM, Chen IS (2001) Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J Virol 75:3488–3489PubMedCrossRefGoogle Scholar
  9. Andersen TL, Boissy P, Sondergaard TE et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17PubMedCrossRefGoogle Scholar
  10. Anderson JM (2000) Multinucleated giant cells. Curr Opin Hematol 7:40–47PubMedCrossRefGoogle Scholar
  11. Anderson MJ, Stanbridge EJ (1993) Tumor suppressor genes studied by cell hybridization and chromosome transfer. FASEB J 7:826–833PubMedGoogle Scholar
  12. Andersson AC, Svensson AC, Rolny C, Andersson G, Larsson E (1998) Expression of human endogenous retrovirus ERV3 (HERV-R) mRNA in normal and neoplastic tissues. Int J Oncol 12:309–313PubMedGoogle Scholar
  13. Antony JM, van Marle G, Opii W et al (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7:1088–1095PubMedCrossRefGoogle Scholar
  14. Antony JM, Zhu Y, Izad M et al (2007) Comparative expression of human endogenous retrovirus-W genes in multiple sclerosis. AIDS Res Hum Retroviruses 23:1251–1256PubMedCrossRefGoogle Scholar
  15. Armbruester V, Sauter M, Krautkraemer E et al (2002) A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 8:1800–1807PubMedGoogle Scholar
  16. Athanasou NA, Wells CA, Quinn J et al (1989) The origin and nature of stromal osteoclast-like multinucleated giant cells in breast carcinoma: implications for tumour osteolysis and macrophage biology. Br J Cancer 59:491–498PubMedGoogle Scholar
  17. Atra A, Al-Asiri R, Wali S et al (2007) Hepatocellular carcinoma, syncytial giant cell: a novel variant in children: a case report. Ann Diagn Pathol 11:61–63PubMedCrossRefGoogle Scholar
  18. Avital I, Moreira AL, Klimstra DS et al (2007) Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation. Stem Cells 25:2903–2909PubMedCrossRefGoogle Scholar
  19. Balada E, Ordi-Ros J, Vilardell-Tarrés M (2009) Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev Med Virol 19:273–286PubMedCrossRefGoogle Scholar
  20. Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA 101:14572–14579PubMedCrossRefGoogle Scholar
  21. Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102:1130–1139PubMedCrossRefGoogle Scholar
  22. Bieda K, Hoffmann A, Boller K (2001) Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J Gen Virol 82:591–596PubMedGoogle Scholar
  23. Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904PubMedCrossRefGoogle Scholar
  24. Bjerregaard B, Holck S, Christensen IJ et al (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–1911PubMedCrossRefGoogle Scholar
  25. Blaak H, vant Wout AB, Brouwer M (2000) In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline. Proc Natl Acad Sci USA 97:1269–1274Google Scholar
  26. Blaise S, de Parseval N, Bénit L et al (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA 100:13013–13018PubMedCrossRefGoogle Scholar
  27. Blaise S, de Parseval N, Heidmann T (2005) Functional characterization of two newly identified Human Endogenous Retrovirus coding envelope genes. Retrovirology 2:19PubMedCrossRefGoogle Scholar
  28. Blobel CP, Wolfsberg TG, Turck CW et al (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252PubMedCrossRefGoogle Scholar
  29. Blond JL, Besème F, Duret L et al (1999) Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73:1175–1185PubMedGoogle Scholar
  30. Boller K, König H, Sauter M et al (1993) Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196:349–353PubMedCrossRefGoogle Scholar
  31. Borges M, Bose P, Frank HG et al (2003) A two-colour fluorescence assay for the measurement of syncytial fusion between trophoblast-derived cell lines. Placenta 24:959–964PubMedCrossRefGoogle Scholar
  32. Boros DL (1989) Immunopathology of Schistosoma mansoni infection. Clin Microbiol Rev 2:250–269PubMedGoogle Scholar
  33. Boyd AS, Wu H, Shyr Y (2005) Monster cells in malignant melanoma. Am J Dermatopathol 27:208–210PubMedCrossRefGoogle Scholar
  34. Bronson DL, Fraley EE, Fogh J et al (1979) Induction of retrovirus particles in human testicular tumor (Tera-1) cell cultures: an electron microscopic study. J Natl Cancer Inst 63:337–339PubMedGoogle Scholar
  35. Budka H (1986) Multinucleated giant cells in brain: a hallmark of the acquired immune deficiency syndrome (AIDS). Acta Neuropathol 69:253–258PubMedCrossRefGoogle Scholar
  36. Büscher K, Trefzer U, Hofmann M et al (2005) Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res 65:4172–4180PubMedCrossRefGoogle Scholar
  37. Busund LT, Killie MK, Bartnes K et al (2002) Spontaneously formed tumorigenic hybrids of Meth A sarcoma and macrophages grow faster and are better vascularized than the parental tumor. Int J Cancer 100:407–413PubMedCrossRefGoogle Scholar
  38. Busund LT, Killie MK, Bartnes K et al (2003) Spontaneously formed tumorigenic hybrids of Meth A sarcoma cells and macrophages in vivo. Int J Cancer 106:153–159PubMedCrossRefGoogle Scholar
  39. Camargo FD, Finegold M, Goodell MA (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest 113:1266–1270PubMedGoogle Scholar
  40. Camargo FD, Green R, Capetanaki Y et al (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9:1520–1527PubMedCrossRefGoogle Scholar
  41. Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837PubMedCrossRefGoogle Scholar
  42. Chakraborty A, Lazova R, Davies S et al (2004) Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplant 34:183–186PubMedCrossRefGoogle Scholar
  43. Chakraborty AK, de Freitas Sousa J, Espreafico EM et al (2001) Human monocyte x mouse melanoma fusion hybrids express human gene. Gene 275:103–106PubMedCrossRefGoogle Scholar
  44. Chang C, Chen PT, Chang GD et al (2004) Functional characterization of the placental fusogenic membrane protein syncytin. Biol Reprod 71:1956–1962.PubMedCrossRefGoogle Scholar
  45. Chen CP, Chen LF, Yang SR et al (2008) Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod 79:815–823PubMedCrossRefGoogle Scholar
  46. Chen EH, Grote E, Mohler W et al (2007) Cell–cell fusion. FEBS Lett 581:2181–2193PubMedCrossRefGoogle Scholar
  47. Cheng JQ, Ruggeri B, Klein WM et al (1996) Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93:3636–3641PubMedCrossRefGoogle Scholar
  48. Cheynet V, Oriol G, Mallet F (2006) Identification of the hASCT2-binding domain of the Env ERVWE1/syncytin-1 fusogenic glycoprotein. Retrovirology 3:41PubMedCrossRefGoogle Scholar
  49. Cheynet V, Ruggieri A, Oriol G et al (2005) Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J Virol 79:5585–5593PubMedCrossRefGoogle Scholar
  50. Clement PB, Young RH (2004) Non-endometrioid carcinomas of the uterine corpus: a review of their pathology with emphasis on recent advances and problematic aspects. Adv Anat Pathol 11:117–142PubMedCrossRefGoogle Scholar
  51. Cohen M, Kato N, Larsson E (1988) ERV3 human endogenous provirus mRNAs are expressed in normal and malignant tissues and cells, but not in choriocarcinoma tumor cells. J Cell Biochem 36:121–128PubMedCrossRefGoogle Scholar
  52. Contreras-Galindo R, Kaplan MH, Leissner P et al (2008) Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 82:9329–9336PubMedCrossRefGoogle Scholar
  53. Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373PubMedCrossRefGoogle Scholar
  54. Coyne JD (2007) DCIS and LCIS with multinucleated giant cells-a report of 4 cases. Histopathology 50:669–671PubMedCrossRefGoogle Scholar
  55. Davies PS, Powell AE, Swain JR et al (2009) Inflammation and proliferation act together to mediate intestinal cell fusion. PLoS One 4:e6530PubMedCrossRefGoogle Scholar
  56. De Chiara A, Apice G, Fazioli F et al (1998) Multicentric giant cell tumor with viral-like inclusions associated with Paget's disease of bone: a case treated by steroid therapy. Oncol Rep 5:317–320PubMedGoogle Scholar
  57. de Parseval N, Diop G, Blaise S et al (2005) Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes. BMC Genomics 6:117PubMedCrossRefGoogle Scholar
  58. de Parseval N, Lazar V, Casella JF et al (2003) Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77:10414–10422PubMedCrossRefGoogle Scholar
  59. Deckard-Janatpour K, Kragel S, Teplitz RL et al (1998) Tumors of the pancreas with osteoclast-like and pleomorphic giant cells: an immunohistochemical and ploidy study. Arch Pathol Lab Med 122:266–272PubMedGoogle Scholar
  60. Depil S, Roche C, Dussart P et al (2002) Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16:254–259PubMedCrossRefGoogle Scholar
  61. Dewannieux M, Blaise S, Heidmann T (2005) Identification of a functional envelope protein from the HERV-K family of human endogenous retroviruses. J Virol79:15573–15577PubMedCrossRefGoogle Scholar
  62. Drewlo S, Leyting S, Kokozidou M et al (2006) C-Terminal truncations of syncytin-1 (ERVWE1 envelope) that increase its fusogenicity. Biol Chem 387:1113–1120PubMedCrossRefGoogle Scholar
  63. Drexler HG, Gignac SM, Hoffbrand AV et al (1989) Formation of multinucleated cells in a Hodgkin’s-disease-derived cell line. Int J Cancer 43:1083–1090PubMedCrossRefGoogle Scholar
  64. Duelli DM, Hearn S, Myers MP et al (2005) A primate virus generates transformed human cells by fusion. J Cell Biol 171:493–503PubMedCrossRefGoogle Scholar
  65. Duprex WP, McQuaid S, Hangartner L et al (1999) Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73:9568–9575PubMedGoogle Scholar
  66. Engel FB, Schebesta M, Keating MT (2006) Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 41:601–612PubMedCrossRefGoogle Scholar
  67. Esnault C, Priet S, Ribet D et al (2008) A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci USA 105:17532–17537PubMedCrossRefGoogle Scholar
  68. Everts V, de Vries TJ, Helfrich MH (2009) Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta 1792:757–765PubMedGoogle Scholar
  69. Factor SM, Biempica L, Ratner I et al (1977) Carcinoma of the breast with multinucleated reactive stromal giant cells. A light and electron microscopic study of two cases. Virchows Arch A Pathol Anat Histol 374:1–12PubMedCrossRefGoogle Scholar
  70. Feng H, Shuda M, Chang Y et al (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100PubMedCrossRefGoogle Scholar
  71. Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedCrossRefGoogle Scholar
  72. Finkeldey W (1931) Über Riesenzellbefunde in den Gaumenmandeln, zugleich ein Beitrag zur Histopathologie der Mandelveränderungen im Maserninkubationsstadium. Virchows Arch 281:321–329Google Scholar
  73. Folpe AL, Mentzel T, Lehr HA et al (2005) Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol 29:1558–1575PubMedCrossRefGoogle Scholar
  74. Frank O, Verbeke C, Schwarz N et al (2008) Variable transcriptional activity of endogenous retroviruses in human breast cancer. J Virol 82:1808–1818PubMedCrossRefGoogle Scholar
  75. Frankel SS, Wenig BM, Burke AP et al (1996) Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272:115–117PubMedCrossRefGoogle Scholar
  76. Funakoshi E, Hori T, Haraguchi T et al (2003) Overexpression of the human MNB/DYRK1A gene induces formation of multinucleate cells through overduplication of the centrosome. BMC Cell Biol 4:12PubMedCrossRefGoogle Scholar
  77. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMedCrossRefGoogle Scholar
  78. Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162PubMedCrossRefGoogle Scholar
  79. Gattegno T, Mittal, A, Valansi, C et al (2007) Genetic control of fusion pore expansion in the epidermis of Caenorhabditis elegans. Mol Biol Cell 18:1153–1166PubMedCrossRefGoogle Scholar
  80. Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17:351–386PubMedCrossRefGoogle Scholar
  81. Goedert JJ, Sauter ME, Jacobson LP et al (1999) High prevalence of antibodies against HERV-K10 in patients with testicular cancer but not with AIDS. Cancer Epidemiol Biomarkers Prev 8:293–296PubMedGoogle Scholar
  82. Golan M, Hizi A, Resau JH et al (2008) Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia 10:521–533PubMedGoogle Scholar
  83. Goldenberg DM, Pavia RA, Tsao MC (1974) In vivo hybridisation of human tumour and normal hamster cells. Nature 250:649–651PubMedCrossRefGoogle Scholar
  84. Guidotti JE, Brégerie O, Robert A et al (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101PubMedCrossRefGoogle Scholar
  85. Guo GQ, Zheng GC (2004) Hypotheses for the functions of intercellular bridges in male germ cell development and its cellular mechanisms. J Theor Biol 229:139–146PubMedCrossRefGoogle Scholar
  86. Gupta S (2000) Hepatic polyploidy and liver growth control. Semin Cancer Biol 10:161–171PubMedCrossRefGoogle Scholar
  87. Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the MDX mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  88. Hahn S, Ugurel S, Hanschmann KM et al (2008) Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res Hum Retroviruses 24:717–723PubMedCrossRefGoogle Scholar
  89. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  90. Hansemann D (1890) Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Arch Pathol Anat etc. Berl (Virchow’s Arch) 119:299–326Google Scholar
  91. Harris H (1988) The analysis of malignancy by cell fusion: the position in 1988. Cancer Res 48:3302–3306PubMedGoogle Scholar
  92. Harris H, Miller OJ, Klein G et al (1969) Suppression of malignancy by cell fusion. Nature 223:363–368PubMedCrossRefGoogle Scholar
  93. Harris H, Watkins JF (1965) Hybrid cells derived from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature 205:640–646PubMedCrossRefGoogle Scholar
  94. Helm CA, Israelachvili JN, McGuiggan PM (1992) Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 31:1794–805CrossRefGoogle Scholar
  95. Helming L, Gordon S (2007) The molecular basis of macrophage fusion. Immunobiology 212:785–793PubMedCrossRefGoogle Scholar
  96. Herbst H, Sauter M, Mueller-Lantzsch N (1996) Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am J Pathol 149:1727–1735PubMedGoogle Scholar
  97. Homma T, Fukushima T, Vaccarella S et al (2006) Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol 65:846–854PubMedCrossRefGoogle Scholar
  98. Horsley V, Pavlath GK (2004) Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs 176:67–78PubMedCrossRefGoogle Scholar
  99. Horváth EM, Lacza Z, Csordás A et al (2006) Graft derived cells with double nuclei in the penumbral region of experimental brain trauma. Neurosci Lett 396:182–186PubMedCrossRefGoogle Scholar
  100. Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571PubMedCrossRefGoogle Scholar
  101. Huppertz B. (2009) Review: biology of the placental syncytiotrophoblast – myths and facts. Placenta. 2009 Dec 29. [Epub ahead of print]Google Scholar
  102. Ianus A, Holz GG, Theise ND et al (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMedGoogle Scholar
  103. Ishida T, Obata Y, Ohara N et al (2008) Identification of the HERV-K gag antigen in prostate cancer by SEREX using autologous patient serum and its immunogenicity. Cancer Immun 8:15PubMedGoogle Scholar
  104. Jacobsen BM, Harrell JC, Jedlicka P (2006) Spontaneous fusion with, and transformation of mouse stroma by, malignant human breast cancer epithelium. Cancer Res 66:8274–8279PubMedCrossRefGoogle Scholar
  105. Jin J, Woodgett JR (2005) Chronic activation of protein kinase Bbeta/Akt2 leads to multinucleation and cell fusion in human epithelial kidney cells: events associated with tumorigenesis. Oncogene 24:5459–5470PubMedCrossRefGoogle Scholar
  106. Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583PubMedCrossRefGoogle Scholar
  107. Jones MA, Young RH, Scully RE (1991) Endometrial adenocarcinoma with a component of giant cell carcinoma. Int J Gynecol Pathol 10:260–270PubMedCrossRefGoogle Scholar
  108. Jurka J (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16:418–20CrossRefGoogle Scholar
  109. Karlsson H, Bachmann S, Schröder J et al (2001) Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci USA 98:4634–4639PubMedCrossRefGoogle Scholar
  110. Kerbel RS, Lagarde AE, Dennis JW et al (1983) Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Mol Cell Biol 3:523–538PubMedGoogle Scholar
  111. Keydar I, Ohno T, Nayak R et al (1984) Properties of retrovirus-like particles produced by a human breast carcinoma cell line: immunological relationship with mouse mammary tumor virus proteins. Proc Natl Acad Sci USA 81:4188–4192PubMedCrossRefGoogle Scholar
  112. Kim S, Shilagardi K, Zhang S et al (2007) A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell 12:571–586PubMedCrossRefGoogle Scholar
  113. Kodama S, Kühtreiber W, Fujimura S et al (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227PubMedCrossRefGoogle Scholar
  114. Koranda FC (2004) Images in clinical medicine. Use of multinucleated giant cells to diagnose a viral eruption. N Engl J Med 350:e6PubMedCrossRefGoogle Scholar
  115. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377PubMedCrossRefGoogle Scholar
  116. Krishnan C, Longacre TA (2006) Ductal carcinoma in situ of the breast with osteoclast-like giant cells. Hum Pathol 37:369–372PubMedCrossRefGoogle Scholar
  117. Kudo Y, Boyd CA (2002) Changes in expression and function of syncytin and its receptor, amino acid transport system B(0) (ASCT2), in human placental choriocarcinoma BeWo cells during syncytialization. Placenta 23:536–541PubMedCrossRefGoogle Scholar
  118. Kudryavtsev BN, Kudryavtseva MV, Sakuta GA et al (1993) Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch B Cell Pathol Incl Mol Pathol 64:387–393PubMedCrossRefGoogle Scholar
  119. Küppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27PubMedCrossRefGoogle Scholar
  120. Laforga JB (1999) Giant cell carcinoma of the lung. Report of a case with cytohistologic and clinical correlation. Acta Cytol 43:263–267PubMedGoogle Scholar
  121. Lagasse E, Connors H, Al-Dhalimy M et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234PubMedCrossRefGoogle Scholar
  122. Langbein M, Strick R, Strissel PL et al (2008) Impaired cytotrophoblast cell–cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol Reprod Dev 75:175–183PubMedCrossRefGoogle Scholar
  123. Langhans T (1868) Über Riesenzellen mit wandständigen Kernen in Tuberkeln und die fibröse Form des Tuberkels. Virchows Arch (Pathol Anat) 42:382–404Google Scholar
  124. Larizza L, Schirrmacher V (1984) Somatic cell fusion as a source of genetic rearrangement leading to metastatic variants. Cancer Metastasis Rev 3:193–222PubMedCrossRefGoogle Scholar
  125. Larizza L, Schirrmacher V, Pfluger E (1984) Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. J Exp Med 160:1579–1584PubMedCrossRefGoogle Scholar
  126. Larsen JM, Christensen IJ, Nielsen HJ et al (2009) Syncytin immunoreactivity in colorectal cancer: potential prognostic impact. Cancer Lett 280:44–49PubMedCrossRefGoogle Scholar
  127. Larsson LI, Bjerregaard B, Talts JF (2008) Cell fusions in mammals. Histochem Cell Biol 129:551–561.PubMedCrossRefGoogle Scholar
  128. Larsson LI, Holck S, Christensen IJ (2007) Prognostic role of syncytin expression in breast cancer. Hum Pathol 38:726–731PubMedCrossRefGoogle Scholar
  129. Lau YS, Danks L, Sun SG et al (2007) RANKL-dependent and RANKL-independent mechanisms of macrophage-osteoclast differentiation in breast cancer. Breast Cancer Res Treat 105:7–16.PubMedCrossRefGoogle Scholar
  130. Lau YS, Sabokbar A, Giele H et al (2006) Malignant melanoma and bone resorption. Br J Cancer 94:1496–503.CrossRefGoogle Scholar
  131. Lavillette D, Marin M, Ruggieri A et al (2002) The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 76:6442–6452.PubMedCrossRefGoogle Scholar
  132. Leib-Mösch C, Brack-Werner R, Werner T et al (1990) Endogenous retroviral elements in human DNA. Cancer Res 50:5636S–5642S.PubMedGoogle Scholar
  133. Lescar J, Roussel A, Wien MW et al (2001) Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–148PubMedCrossRefGoogle Scholar
  134. Lindeskog M, Blomberg J (1997) Spliced human endogenous retroviral HERV-H env transcripts in T-cell leukaemia cell lines and normal leukocytes: alternative splicing pattern of HERV-H transcripts. J Gen Virol 78:2575–2585PubMedGoogle Scholar
  135. Liu C, Chen Z, Zhang T et al (2006) Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8:716–724PubMedCrossRefGoogle Scholar
  136. Lordier L, Jalil A, Aurade F et al (2008) Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood 112:3164–3174PubMedCrossRefGoogle Scholar
  137. Löwer R, Löwer J, Frank H et al (1984) Human teratocarcinomas cultured in vitro produce unique retrovirus-like viruses. J Gen Virol 65:887–898PubMedCrossRefGoogle Scholar
  138. Lu X, Kang Y (2009) Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc Natl Acad Sci USA 106:9385–9390PubMedCrossRefGoogle Scholar
  139. Maeda K, Mizuno M, Wakabayashi T et al (2003) Morphological assessment of the development of multinucleated giant cells in glioma by using mitosis-specific phosphorylated antibodies. J Neurosurg 98:854–859PubMedCrossRefGoogle Scholar
  140. Malassiné A, Blaise S, Handschuh K et al (2007) Expression of the fusogenic HERV-FRD Env glycoprotein (syncytin 2) in human placenta is restricted to villous cytotrophoblastic cells. Placenta 28:185–191PubMedCrossRefGoogle Scholar
  141. Mallet F, Bouton O, Prudhomme S et al (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101:1731–1736PubMedCrossRefGoogle Scholar
  142. Margall-Ducos G, Celton-Morizur S, Couton D et al (2007) Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J Cell Sci 120:3633–3639PubMedCrossRefGoogle Scholar
  143. Margolis RL (2005). Tetraploidy and tumor development. Cancer Cell 8:353–354PubMedCrossRefGoogle Scholar
  144. Matousková M, Blazková J, Pajer P et al (2006) CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues. Exp Cell Res 312:1011–1020PubMedCrossRefGoogle Scholar
  145. Matveeva NM, Shilov AG, Kaftanovskaya EM et al (1998) In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev 50:128–138PubMedCrossRefGoogle Scholar
  146. Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53–/– cells. EMBO J 21:483–492PubMedCrossRefGoogle Scholar
  147. Mi S, Lee X, Li X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789PubMedCrossRefGoogle Scholar
  148. Miething A (1995) Multinuclearity of germ cells in the senescent human testis originates from a process of cell–cell fusion. J Submicrosc Cytol Pathol 27:105–113PubMedGoogle Scholar
  149. Miettinen M, Virtanen I, Talerman A (1985) Intermediate filament proteins in human testis and testicular germ-cell tumors. Am J Pathol 120:402–410PubMedGoogle Scholar
  150. Miller FR, McInerney D, Rogers et al (1988) Spontaneous fusion between metastatic mammary tumor subpopulations. J Cell Biochem 36:129–136PubMedCrossRefGoogle Scholar
  151. Miller RA, Ruddle FH (1976) Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell 9:45–55PubMedCrossRefGoogle Scholar
  152. Miyoshi Y, Iwao K, Egawa C et al (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92:370–373PubMedCrossRefGoogle Scholar
  153. Mohler WA, Shemer G, del Campo JJ et al (2002) The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev Cell 2:355–362PubMedCrossRefGoogle Scholar
  154. Mortensen K, Lichtenberg J, Thomsen PD et al (2004) Spontaneous fusion between cancer cells and endothelial cells. Cell Mol Life Sci 61:2125–2131PubMedCrossRefGoogle Scholar
  155. Mostofi FK, Sesterhenn IA (1985) Pathology of germ cell tumors of testes. Prog Clin Biol Res 203:1–34PubMedGoogle Scholar
  156. Munoz PA, Rao MS, Reddy JK (1980) Osteoclastoma-like giant cell tumor of the liver. Cancer 46:771–779PubMedCrossRefGoogle Scholar
  157. Nakahashi H (1987) Undifferentiated carcinoma of the lung with osteoclast-like giant cells. Jpn J Surg 17:199–203PubMedCrossRefGoogle Scholar
  158. Navarro D, Paz P, Tugizov S et al (1993) Glycoprotein B of human cytomegalovirus promotes virion penetration into cells, transmission of infection from cell to cell, and fusion of infected cells. Virology 197:143–158PubMedCrossRefGoogle Scholar
  159. Nelson PN, Carnegie PR, Martin J et al (2003) Demystified. Human endogenous retroviruses. Mol Pathol 56:11–18PubMedCrossRefGoogle Scholar
  160. Nygren JM, Jovinge S, Breitbach M et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501PubMedCrossRefGoogle Scholar
  161. Nygren JM, Liuba K, Breitbach M et al (2008) Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol 10:584–592PubMedCrossRefGoogle Scholar
  162. Okamoto H, Mizuno K, Horio T (2003) Monocyte-derived multinucleated giant cells and sarcoidosis. J Dermatol Sci 31:119–128PubMedCrossRefGoogle Scholar
  163. Ono M, Kawakami M, Ushikubo H (1987) Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol 61:2059–2062PubMedGoogle Scholar
  164. Oren-Suissa M, Podbilewicz B (2007) Cell fusion during development. Trends Cell Biol 17:537–546PubMedGoogle Scholar
  165. Pathak S, Nemeth MA, Multani AS et al (1997) Can cancer cells transform normal host cells into malignant cells? Br J Cancer 76:1134–1138PubMedGoogle Scholar
  166. Pawelek JM (2005) Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol 6:988–993PubMedCrossRefGoogle Scholar
  167. Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386PubMedCrossRefGoogle Scholar
  168. Pesce C, Merino MJ, Chambers JT et al (1991) Endometrial carcinoma with trophoblastic differentiation. An aggressive form of uterine cancer. Cancer 68:1799–1802PubMedCrossRefGoogle Scholar
  169. Piquer-Gil M, García-Verdugo JM, Zipancic I et al (2009) Cell fusion contributes to pericyte formation after stroke. J Cereb Blood Flow Metab 29:480–485PubMedCrossRefGoogle Scholar
  170. Prudhomme S, Oriol G, Mallet F (2004) A retroviral promoter and a cellular enhancer define a bipartite element which controls Env ERVWE1 placental expression. J Virol 78:12157–12168PubMedCrossRefGoogle Scholar
  171. Prusty BK, zur Hausen H, Schmidt R et al (2008) Transcription of HERV-E and HERV-E-related sequences in malignant and non-malignant human haematopoietic cells. Virology 382:37–45PubMedCrossRefGoogle Scholar
  172. Rakowicz-Szulczynska EM, McIntosh DG, Smith ML (1999) Giant syncytia and virus-like particles in ovarian carcinoma cells isolated from ascites fluid. Clin Diagn Lab Immunol 6:115–126PubMedGoogle Scholar
  173. Ravid K, Lu J, Zimmet JM, Jones MR (2002) Roads to polyploidy: the megakaryocyte example. J Cell Physiol 190:7–20PubMedCrossRefGoogle Scholar
  174. Razzuk MA, Urschel HC Jr, Albers JE et al (1976) Pulmonary giant cell carcinoma. Ann Thorac Surg 21:540–545PubMedCrossRefGoogle Scholar
  175. Reinecke H, Minami E, Poppa V et al (2004) Evidence for fusion between cardiac and skeletal muscle cells. Circ Res 94:e56–e60PubMedCrossRefGoogle Scholar
  176. Rizvi AZ, Swain JR, Davies PS et al (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103:6321–6325PubMedCrossRefGoogle Scholar
  177. Robinson LR, Damjenov I, Brezina P (1977) Multinucleated giant cell neoplasm of pancreas. Arch Pathol Lab Med 101:590–593PubMedGoogle Scholar
  178. Rodić N, Rutenberg MS, Terada N (2004) Cell fusion and reprogramming: resolving our transdifferences. Trends Mol Med 10:93–96PubMedCrossRefGoogle Scholar
  179. Roger V, Nasiell M, Nasiell K et al (1972) Cytologic findings indicating pulmonary tuberculosis. II. The occurrence in sputum of epithelioid cells and multinucleated giant cells in pulmonary tuberculosis, chronic non-tuberculous inflammatory lung disease and bronchogenic carcinoma. Acta Cytol 16:538–542PubMedGoogle Scholar
  180. Roodman GD, Windle JJ (2005) Paget disease of bone. J Clin Invest 115:200–208.PubMedGoogle Scholar
  181. Saltel F, Chabadel A, Zhao Y et al (2006) Transmigration: a new property of mature multinucleated osteoclasts. J Bone Miner Res 21:1913–1923PubMedCrossRefGoogle Scholar
  182. Schleiden MJ (1838) Beiträge zur Phytogenesis. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin 13:137–176Google Scholar
  183. Schmitz-Winnenthal FH, Galindo-Escobedo LV, Rimoldi D et al (2007) Potential target antigens for immunotherapy in human pancreatic cancer. Cancer Lett 252:290–298PubMedCrossRefGoogle Scholar
  184. Schwann T (1839) Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum der Thiere und Pflanzen. Sander (Reimer), BerlinGoogle Scholar
  185. Serafino A, Balestrieri E, Pierimarchi P et al (2009) The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp Cell Res 315:849–862PubMedCrossRefGoogle Scholar
  186. Shabo I, Olsson H, Sun XF et al (2009) Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer 125:1826–1831PubMedCrossRefGoogle Scholar
  187. Shemer G, Podbilewicz B (2003) The story of cell fusion: big lessons from little worms. Bioessays 25:672–682PubMedCrossRefGoogle Scholar
  188. Shestopalov VI, Bassnett S (2000) Expression of autofluorescent proteins reveals a novel protein permeable pathway between cells in the lens core. J Cell Sci 113:1913–1921PubMedGoogle Scholar
  189. Shi Y, Barton K, De Maria A et al (2009) The stratified syncytium of the vertebrate lens. J Cell Sci 122:1607–1615PubMedCrossRefGoogle Scholar
  190. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  191. Skehel JJ, Wiley DC (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95:871–874PubMedCrossRefGoogle Scholar
  192. Stanbridge EJ (1976) Suppression of malignancy in human cells. Nature 260:17–20PubMedCrossRefGoogle Scholar
  193. Stanbridge EJ, Der CJ, Doersen CJ et al (1982) Human cell hybrids: analysis of transformation and tumorigenicity. Science 215:252–259PubMedCrossRefGoogle Scholar
  194. Stauffer Y, Theiler G, Sperisen P et al (2004) Digital expression profiles of human endogenous retroviral families in normal and cancerous tissues. Cancer Immunol 4:2Google Scholar
  195. Strick R, Ackermann S, Langbein M et al (2007) Proliferation and cell–cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med 85:23–38PubMedCrossRefGoogle Scholar
  196. Tada M, Takahama Y, Abe K et al (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558PubMedCrossRefGoogle Scholar
  197. Takeuchi H, Kubota T, Kitai R et al (2008) CD98 immunoreactivity in multinucleated giant cells of glioblastomas: an immunohistochemical double labeling study. Neuropathology 28:127–131PubMedCrossRefGoogle Scholar
  198. Takeuchi H, Sato K, Ido K et al (2006) Mitotic activity of multinucleated giant cells with glial fibrillary acidic protein immunoreactivity in–18 glioblastomas: an immunohistochemical double labeling study. J Neurooncol 78:15PubMedCrossRefGoogle Scholar
  199. Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545PubMedCrossRefGoogle Scholar
  200. Therman E, Sarto GE, Buchler DA (1983) The structure and origin of giant nuclei in human cancer cells. Cancer Genet Cytogenet 9:9–18PubMedCrossRefGoogle Scholar
  201. Tran SD, Pillemer SR, Dutra A et al (2003) Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet 361:1084–1088PubMedCrossRefGoogle Scholar
  202. Tristem M (2000) Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 74:3715–3730PubMedCrossRefGoogle Scholar
  203. Turbeville MA, Rhodes JC, Hyams DM et al (1997) Characterization of a putative retroviral env-related human protein. Pathobiology 65:123–128PubMedCrossRefGoogle Scholar
  204. Turner G, Barbulescu M, Su M et al (2001) Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 11:1531–1535PubMedCrossRefGoogle Scholar
  205. Ulbright TM (2005) Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod Pathol 18:S61–S79PubMedCrossRefGoogle Scholar
  206. Ullah Z, Kohn MJ, Yagi R et al (2008) Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 22:3024–3036PubMedCrossRefGoogle Scholar
  207. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904PubMedCrossRefGoogle Scholar
  208. Veliath AJ, Sandaran V, Aurora AM (1975) Ovarian giant cell tumor with cystadenocarcinoma. Arch Pathol 99:488–491PubMedGoogle Scholar
  209. Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15:188–193PubMedCrossRefGoogle Scholar
  210. Villesen P, Aagaard L, Wiuf C et al (2004) Identification of endogenous retroviral reading frames in the human genome. Retrovirology 1:32PubMedCrossRefGoogle Scholar
  211. von Hochstetter AR, Sigg C, Saremaslani P et al (1985) The significance of giant cells in human testicular seminomas. A clinico-pathological study. Virchows Arch A Pathol Anat Histopathol 407:309–322CrossRefGoogle Scholar
  212. Wang X, Willenbring H, Akkari Y et al (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901PubMedCrossRefGoogle Scholar
  213. Wang-Johanning F, Frost AR, Jian B et al (2003) Detecting the expression of human endogenous retrovirus E envelope transcripts in human prostate adenocarcinoma. Cancer 98:187–197PubMedCrossRefGoogle Scholar
  214. Wang-Johanning F, Frost AR, Jian B et al (2003) Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene 22:1528–1535PubMedCrossRefGoogle Scholar
  215. Wang-Johanning F, Frost AR, Johanning GL et al (2001) Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin Cancer Res 7:1553–1560PubMedGoogle Scholar
  216. Wang-Johanning F, Liu J, Rycaj K et al (2007) Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer 120:81–90PubMedCrossRefGoogle Scholar
  217. Wang-Johanning F, Radvanyi L, Rycaj K et al (2008) Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res 68:5869–5877PubMedCrossRefGoogle Scholar
  218. Watanabe K, Hiraki H, Ohishi M et al (1996) Uterine leiomyosarcoma with osteoclast-like giant cells: Histopathological and cytological observations. Pathol Int 46:656–660PubMedCrossRefGoogle Scholar
  219. Weimann JM, Johansson CB, Trejo A et al (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5:959–966PubMedCrossRefGoogle Scholar
  220. Werner M (2006) Giant cell tumour of bone: morphological, biological and histogenetical aspects. Int Orthop 30:484–489PubMedCrossRefGoogle Scholar
  221. Wiener F, Klein G, Harris H (1974a) The analysis of malignancy by cell fusion. V. Further evidence of the ability of normal diploid cells to suppress malignancy. J Cell Sci 15:177–183PubMedGoogle Scholar
  222. Wiener F, Klein G, Harris H (1974b) The analysis of malignancy by cell fusion. VI. Hybrids between different tumour cells. J Cell Sci 16:189–198PubMedGoogle Scholar
  223. Williams WJ, Williams D (1967) “Residual bodies” in sarcoid and sarcoid-like granulomas. J Clin Pathol 20:574–577PubMedCrossRefGoogle Scholar
  224. Winge O (1927) Cytologische Untersuchungen über die Natur maligner Tumoren I. Z. Zellforschg 6Google Scholar
  225. Wöckel L, Ketelsen UP, Stötter M et al (1998) Abundant minute myotubes in a patient who later developed centronuclear myopathy. Acta Neuropathol 95:547–551PubMedCrossRefGoogle Scholar
  226. Yasunaga M, Ohishi Y, Nishimura I et al (2008) Ovarian undifferentiated carcinoma resembling giant cell carcinoma of the lung. Pathol Int 58:244–248PubMedCrossRefGoogle Scholar
  227. Yesner R (1985) Large cell carcinoma of the lung. Semin Diagn Pathol 2:255–269PubMedGoogle Scholar
  228. Yi JM, Kim HM, Kim HS (2004) Expression of the human endogenous retrovirus HERV-W family in various human tissues and cancer cells. J Gen Virol 85:1203–1210PubMedCrossRefGoogle Scholar
  229. Yi JM, Kim HM, Kim HS (2006) Human endogenous retrovirus HERV-H family in human tissues and cancer cells: expression, identification, and phylogeny. Cancer Lett 231:228–239.PubMedCrossRefGoogle Scholar
  230. Yi JM, Kim HS (2004) Expression analysis of endogenous retroviral elements belonging to the HERV-F family from human tissues and cancer cells. Cancer Lett 211:89–96PubMedCrossRefGoogle Scholar
  231. Yi JM, Kim HS (2007) Expression and phylogenetic analyses of human endogenous retrovirus HC2 belonging to the HERV-T family in human tissues and cancer cells. J Hum Genet 52:285–296PubMedCrossRefGoogle Scholar
  232. Yi JM, Kim HS (2007) Molecular phylogenetic analysis of the human endogenous retrovirus E (HERV-E) family in human tissues and human cancers. Genes Genet Syst 82:89–98PubMedCrossRefGoogle Scholar
  233. Yi JM, Kim TH, Huh JW et al (2004) Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342:283–292PubMedCrossRefGoogle Scholar
  234. Yi JM, Lee WH, Kim HM et al (2001) Identification of new endogenous retroviral sequences belonging to the HERV-W family in human cancer cells. Intervirology 44:333–338PubMedCrossRefGoogle Scholar
  235. Yi JM, Schuebel K, Kim HS (2007) Molecular genetic analyses of human endogenous retroviral elements belonging to the HERV-P family in primates, human tissues, and cancer cells. Genomics 89:1–9PubMedCrossRefGoogle Scholar
  236. Yilmaz Y, Lazova R, Qumsiyeh M et al (2005) Donor Y chromosome in renal carcinoma cells of a female BMT recipient: visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplant 35:1021–1024PubMedCrossRefGoogle Scholar
  237. Ying QL, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Nature 416:545–548PubMedCrossRefGoogle Scholar
  238. Zhivotovsky B, Kroemer G (2004) Apoptosis and genomic instability. Nat Rev Mol Cell Biol 5:752–762PubMedCrossRefGoogle Scholar
  239. Zhou H, Kuang J, Zhong L et al (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Reiner Strick
    • 1
  • Matthias W. Beckmann
    • 1
  • Pamela L. Strissel
    • 1
  1. 1.Department of Gynaecology and Obstetrics, Laboratory for Molecular MedicineUniversity-Clinic ErlangenErlangenGermany

Personalised recommendations