Detection of Fungal Pathogens in Plants



Among the microbial plant pathogens, fungus-like and fungal pathogens have well developed thallus consisting of hyphae, asexual and sexual reproductive structures. The morphological characteristics of these structures and various kinds of spores produced by them have been the basis of identification up to genus/species level and classification of these pathogens into family, order and class. However, the formae speciales, strains, varieties or biotypes within a morphologic species have to be identified using other characteristics such as pathogenicity, biochemical and immunological properties or nucleotide sequences of the genomic DNA. Isozyme analysis, vegetative compatability group (VCG) analysis and electrophoretic mobility of cell wall proteins have been shown to be useful for the detection of strains of some fungal pathogens. The usefulness of immunoassays for early detection and precise identification has been significantly enhanced following the development of enzyme-linked immunosorbent assay (ELISA) and monoclonal antibodies which exhibit greater sensitivity and specificity compared with Appendix 1 based methods which are laborious and time-consuming. Nucleic acid-based diagnostic techniques depending on the variations in the nucleotide sequences of the pathogen DNA have become the preferred ones, because of their greater speed, specificity, sensitivity, reliability, and reproducibility of the results obtained, following the development of polymerase chain reaction (PCR). Several variants of PCR and commercial kits for on-site adoption under field conditions, away from the laboratory, are now available, providing the results in a short time. The possibility of detecting two or more pathogens simultaneously has become bright after the development of DNA array technology. A wide range of diagnostic techniques can be applied for detection, identification and quantification of fungal pathogens present in the infected plants, propagative plant materials and postharvest produce. Speed, specificity, sensitivity and cost-effectiveness are the primary factors that may determine the suitability and choice of the diagnostic tests.


  1. Abad ZG, Abad JA, Cofffey MD, Oudemans PV, Man in’t Veld WA, de Gruyter H, Cunnington J, Louws FJ (2008) Phytophthora bischeria sp. nov., a new species identified in isolates from the Rosaceous raspberry, rose and strawberry in three continents. Mycologia 100: 99–110.PubMedCrossRefGoogle Scholar
  2. Abdullah I, Koerbler M, Stachewicz H, Winter S (2005) The 18S rDNA of Synchytrium endobioticum and its utility in microarrays for simultaneous detection of fungal and viral pathogens. Appl Microbiol Biotechnol 68: 368–375.CrossRefGoogle Scholar
  3. Abe H, Baba T, Takukuwa T (1969) Serological reaction of root rot pathogen (Rhizoctonia solani) of sugar beets. Ann Phytopathol Soc Jpn 35: 374.Google Scholar
  4. Adair S, Kim S, Breuil C (2002) A molecular approach for early monitoring of decay basidiomycetes in wood chips. FEMS Microbiol Lett 211: 117–122.PubMedCrossRefGoogle Scholar
  5. Adams GC Jr., Butler EE (1979) Serological relationships among anastomosis groups of Rhizoctonia solani. Phytopathology 69: 629–633.CrossRefGoogle Scholar
  6. Afouda L, Wolf G, Wydra K (2009) Development of a sensitive serological method for specific detection of laltent infection of Macrophomina phaseolina in cowpea. J Phytopathol 157: 15–23.CrossRefGoogle Scholar
  7. Agarwal VK, Sinclair TB (1996) Principles of Seed Pathology, 2nd edition, CRC Press, Boca Raton, FL, USA.Google Scholar
  8. Aggarwal A, Sharma D, Anuradha, Prakash V, Mehrotra RS (2001) Electrophoresis pattern of mycelial protein – a tool for differentiation of Phytophthora species from Chukrasia tabularis. Ind Phytopathol 54: 424–428.Google Scholar
  9. Agrios GN (2005) Plant Pathology, 5th edition, Elsevier-Academic Press, Amsterdam.Google Scholar
  10. Ahmed KM, Ravinder Reddy Ch (1993) A pictorial guide to the identification of seedborne fungi from sorghum, pearl millet, finger millet, chickpea, pigeonpea and groundnut. Information Bull No. 34, Internat Crops Res Inst for Semi-Arid Tropics (ICRISAT), Patancheru, India.Google Scholar
  11. Alaei H, Baeyen S, Maes M, Höfte M, Heungens K (2009) Molecular detection of Puccinia horiana in Chrysanthemum × morifolium through conventional and real-time PCR. J Microbiol Meth 76: 136–145.CrossRefGoogle Scholar
  12. Al-Samarrai TH, Schmid J (2000) A simple method for extraction of fungal genomic DNA. Appl Microbiol Lett 30: 53–56.CrossRefGoogle Scholar
  13. Andrade O, Muñoz G, Galdames R, Durán P, Honorato R (2004) Characterization, in vitro culture and molecular analysis of Thecaphora solani, the causal agent of potato smut. Phytopathology 94: 875–882.PubMedCrossRefGoogle Scholar
  14. Anil Kumar, Singh A, Garg GK (1998) Development of seed immunoblot binding assay for the detection of Karnal bunt (Tilletia indica) of wheat. J Plant Biochem Biotechnol 7: 119–120.CrossRefGoogle Scholar
  15. Appel R, Alder N, Habermeyer J (2001) A method for the artificial inoculation of potato tubers with Phytophthora infestans and polymerase chain reaction of latently infected sprouts and stems. J Phytopathol 149: 297.CrossRefGoogle Scholar
  16. Arie T, Hayashi Y, Yoneyama K, Nagatani A, Furuya M, Yamaguchi I (1995) Detection of Fusarium spp. in plants with monoclonal antibody. Ann Phytopathol Soc Jpn 61: 311–317.CrossRefGoogle Scholar
  17. Arie T, Gouthu S, Shimagaki S, Kamakura J, Kimura M, Inoue M, Takio K, Ozaki A, Yoneyama K, Yamaguchi I (1998) Immunological detection of endopolygalacturonase secretion by Fusarium oxysporum in plant tissue and sequencing of its encoding gene. Ann Phytopathol Soc Jpn 64: 7–15.CrossRefGoogle Scholar
  18. Armengol J, Vicent A, Torné CL, García-Figueres G, García-Jiménez T (2001) Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathol Mediterr 40: 325–329.Google Scholar
  19. Aroca A, Raposo R (2007) PCR-based strategy to detect and identify species of Phaeoacremonium causing grapevine disease. Appl Environ Microbiol 73: 2911–2918.PubMedCrossRefGoogle Scholar
  20. Arzanlou M, Abeln ECA, Kema GHJ, Waalwijk C, Carlier J, de Vries I, Guzman M, Crous P (2007) Molecular diagnostics for the Sigatoka disease complex of Banana. Phytopathology 97: 1112–1118.PubMedCrossRefGoogle Scholar
  21. Atassi MZ, Lee C (1978) The precise and entire antigenic structure of native lysozyme. Biochem J 171: 429–434.PubMedGoogle Scholar
  22. Attallah ZK, Stevenson WR (2006) A methodology to detect and quantify five pathogens causing decay using real-time quantitative polymerase chain reaction. Phytopathology 96: 1037–1045.CrossRefGoogle Scholar
  23. Attallah ZK, Bae J, Jansky SH, Rouse DI, Stevenson WR (2007) Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology 97: 865–872.CrossRefGoogle Scholar
  24. Babadoost M, Chen W, Bratsch AD, Eastman CE (2004) Verticilliun longisporum and Fusarium solani: two new species in the complex of internal discoloration of horseradish. Plant Pathol 53: 669–676.CrossRefGoogle Scholar
  25. Balesedent MH, Jednyczka M, Jain L, Mendes-Pereira E, Betrandy J, Rouxnel (1998) Conidia as a substrate for internal transcribed spacer based PCR identification of components of Leptosphaeria maculans-species complex. Phytopathology 88: 1210–1217.CrossRefGoogle Scholar
  26. Banks JN, Cox SJ (1992) The solid phase attachment of fungal hyphae in an ELISA to screen for antifungal antibodies. Mycopathologia 120: 79–85.PubMedCrossRefGoogle Scholar
  27. Banks JN, Cox SJ, Clarke JH, Shamsi RH, Northway BJ (1992) Towards the immunological detection of field and storage fungi. In: Samson RA, Hocking AD, Ritt JI, King AD (ed), Modern Methods in Food Mycology, Elsevier, Holland, pp. 247–252.Google Scholar
  28. Barnes CW, Szabo LJ (2007) Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology 97: 717–727.PubMedCrossRefGoogle Scholar
  29. Barnes CW, Szabo LJ (2008) A rapid method for detecting and quantifying bacterial DNA in rust fungal DNA samples. Phytopathology 98: 115–119.PubMedCrossRefGoogle Scholar
  30. Bary T, Colleran G, Glennon M, Duncan LK, Gannon F (1991) The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Meth Appl 1: 51–56.CrossRefGoogle Scholar
  31. Bates JA, Taylor EJA (2001) Scorpion ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres. Mol Plant Pathol 2: 275–280.PubMedCrossRefGoogle Scholar
  32. Baysal-Gurel F, Lewis Ivey ML, Dorrance A, Frederick R, Czarnecki J, Boeh M, Miller SA (2008) An immunofluorescence assay to detect urediniospores of Phakopsora pachyrhizi. Plant Dis 92: 1387–1393.CrossRefGoogle Scholar
  33. Bearchell SJ, Fraaije BA, Shaw MM, Fitt BD (2005) Wheat archive links long-term fungal pathogen population dynamics to air population. Proc. Natl Acad Sci USA 102: 5438–5442.PubMedCrossRefGoogle Scholar
  34. Beck JJ, Ligon JM (1995) Polymerase chain reaction assays for the detection of Stagonospora nodorum and Septoria tritici in wheat. Phytopathology 85: 319–324.CrossRefGoogle Scholar
  35. Beck JJ, Ligon JM, Etienne L, Binder A (1996) Detection of crop fungal pathogens by polymerase chain reaction technology. BCPC Symp Proc No. 65, Diagnostics in Crop Production, pp. 111–118.Google Scholar
  36. Beever RE, Parkes SL (2003) Use of nitrate non-utilizing (Nit) mutants to determine vegetative compatibility in Botryotinia fuckeliana (Botrytis cinerea). Eur J Plant Pathol 109: 607–613.CrossRefGoogle Scholar
  37. Beever RE, Weeds PL (2004) Taxonomy and genetic variation of Botrytis and Botryotinia. In: Elad Y, Williamson P, Tudzinski P, Delen N (ed) Botryits: Biology, Pathology and Control, Kluwer Academic, Dordrecht, pp. 29–52.Google Scholar
  38. Bell KS, Roberts J, Verrall S, Cullen DW, Williams NA, Harrisons JG, Toth IK, Cooke DEL, Duncan JM, Claxton JR (1999) Detection and quantification of Spongospora subterranea f.sp. subterranea in soils and on tubers using specific primers. Eur J Plant Pathol 105: 905–915.CrossRefGoogle Scholar
  39. Bellaire L de, Chillet M, Mourichon S (2000) Elaboration of an early quantification of quiescent infections of Colletotrichum musae on bananas. Plant Dis 84: 128–133.CrossRefGoogle Scholar
  40. Benson DM (1991) Detection of Phytophthora cinnamomi in azalea with commercial serological assay kits. Plant Dis 75: 478–482.CrossRefGoogle Scholar
  41. Benson DM (1992) Detection by enzyme-linked immunosorbent assay of Rhizoctonia species in poinsettia cuttings. Plant Dis 76: 578–581.CrossRefGoogle Scholar
  42. Bermingham S, Dewey FM, Fisher PJ, Maltby L (2001) Use of a monoclonal antibody immunoassay for the detection and quantification of Helicus lugdunensis colonizing alder leaves and roots. Microbial Ecol 42: 506–512.CrossRefGoogle Scholar
  43. Bilodeau GJ, Lévesque CA, de Cock AWAM, Duchaine C, Briére S, Uribe P, Martin FM, Hamelin RC (2007) Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR and molecular beacons. Phytopathology 97: 632–642.PubMedCrossRefGoogle Scholar
  44. Bindslev L, Oliver RP, Johansen B (2002) In situ PCR for detection and identification of fungal species. Mycol Res 106: 277–279.CrossRefGoogle Scholar
  45. Bluhm BH, Cousin MA, Woloshuk CP (2004) Multiplex real-time PCR detection of fumonisin-producing and trichothecene-producing groups of Fusarium species. J Food Protect 67: 536–543.Google Scholar
  46. Böhm J, Hahn A, Schubert R, Bahnweg G, Adler N, Nechwatal J, Oehmann R, Oßwald W (1999) Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring Phytophthora infestans and Phytophthora citricola in their respective host plants. J Phytopathol 147: 404–416.CrossRefGoogle Scholar
  47. Bolwerk A, Lagopodi A, Lugtenberg BJJ, Bolemberg GV (2005) Visualization of interactions between a pathogenic and beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 18: 710–721.PubMedCrossRefGoogle Scholar
  48. Bom M, Boland GJ (2000) Evaluation of polyclonal antibody-based immunoassays for detection of Sclerotinia sclerotiorum on canola petals and prediction of stem rot. Canad J Microbiol 46: 723–729.Google Scholar
  49. Bonants PJM, van Gent-Pelzer PEM, Hagenaarde Weerdt M (2000) Characterization and detection of Phytophthora fragariae in plant, water and soil by molecular methods. Bull OEPP 30: 525–531.CrossRefGoogle Scholar
  50. Bonants PJM, van Gent-Pelzer PEM, Hooftman R, Cooke DEL, Guy DC, Duncan JM (2004) A combination of baiting and different PCR formats, including measurement of real-time quantitative fluorescence for the detection of Phytophthora fragariae in strawberry plants. Eur J Plant Pathol 110: 698–702.CrossRefGoogle Scholar
  51. Bonde MR, Peterson GL, Dowler WM, May B (1984) Isozyme analysis to differentiate species of Peronosclerospora causing downy mildews for maize. Phytopathology 74: 1278.CrossRefGoogle Scholar
  52. Bonde MR, Peterson GL, Dowler WM, May B (1985) Comparison of Tilletia indica isolates from India and Mexico by isozyme analysis. Phytopathology 75: 1309.CrossRefGoogle Scholar
  53. Bonde MR, Peterson GL, Matsumoto TT (1989) The use of isozymes to identify teliospores of Tilletia indica. Phytopathology 79: 596–599.CrossRefGoogle Scholar
  54. Bonde MR, Micales JA, Peterson GL (1993) The use of isozyme analysis for identification of plant pathogenic fungi. Plant Dis 77: 961–968.CrossRefGoogle Scholar
  55. Børja I, Solheim H, Hietala AM, Fossdal CG (2006) Etiology and real-time polymerase chain reaction-based detection of Gremmeniella- and Phomopsis-associated disease in Norway spruce seedlings. Phytopathology 96: 1305–1314.PubMedCrossRefGoogle Scholar
  56. Börjesson T, Johnson L (1998) Detection of common bunt (Tilletia caries) infestation in wheat with an electronic nose and human panel. J Plant Dis Protect 105: 306–313.Google Scholar
  57. Bosland PW, Williams PH (1987) An evaluation of Fusarium oxysporum from crucifers based on pathogenicity, isozyme polymorphism vegetative compatibility and geographic origin. Canad J Bot 65: 2067–2073.CrossRefGoogle Scholar
  58. Bossi R, Dewey FM (1992) Development of a monoclonal antibody-based immunodetection assay for Botrytis cinerea. Plant Pathol 41: 472–482.CrossRefGoogle Scholar
  59. Bounou S, Jabaji-Hare SH, Hogue R, Charest PM (1999) Polymerase chain reaction-based assay for specific detection of Rhizoctonia solani AG-3 isolates. Mycol Res 103: 1–8.CrossRefGoogle Scholar
  60. Bouterige S, Robert R, Bouchara JP, Marot-Leblond A, Molinero V, Senet JM (2000) Production and characterization of two monoclonal antibodies specific for Plasmopara halstedii. Appl Environ Microbiol 66: 3277–3282.PubMedCrossRefGoogle Scholar
  61. Boyle B, Hamelin RC, Séguin A (2005) In vivo monitoring of obligate biotrophic pathogen growth by kinetic-PCR. Appl Environ Microbiol 71: 1546–1552.PubMedCrossRefGoogle Scholar
  62. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochemi 72: 248–254.CrossRefGoogle Scholar
  63. Braun H, Levivier S, Eber F, Renard M, Chevre AM (1997) Electrophoretic analysis of natural populations of Leptosphaeria maculans directly from leaf lesions. Plant Pathol 46: 147–154.CrossRefGoogle Scholar
  64. Brill LM, McClary RD, Sinclair JD (1994) Analysis of two ELISA formats and antigen preparations using polyclonal antibodies to Phomopsis longicolla. Phytopathology 84: 173–179.CrossRefGoogle Scholar
  65. Brown AE, Muthumeenakshi S, Sreenivasaprasad S, Mills RR, Swinburne TR (1993) A PCR primer specific to Cylindrocarpon heteronema for detection of the pathogen in apple wood. FEMS Microbiol Lett 108: 117–120.PubMedCrossRefGoogle Scholar
  66. Bruns TD, White JJ, Taylor JW (1991) Fungal molecular systematics. Ann Rev Ecol Syst 22: 525–564.CrossRefGoogle Scholar
  67. Bulman SR, Marshall JW (1988) Detection of Spongospora subterranea in potato tuber lesions using the polymerase chain reaction (PCR). Plant Pathol 47: 759–766.Google Scholar
  68. Burdon JJ, Luig NH, Marshall DR (1983) Isozyme uniformity and virulence variation in Puccinia graminis f.sp. tritici in Australia. Austr J Biol Sci 36: 403.Google Scholar
  69. Burdon JJ, Roelfs AP, Brown AHD (1986) The genetic basis of isozyme variation in the wheat stem rust fungus (Puccinia graminis tritici). Canad J Genet Cytol 28: 171.Google Scholar
  70. Bussaban B, Lumyong S, Lumyong P, Seelanan T, Park DC, McKenzie EHC, Hyde KD (2005) Molecular and morphological characterization of Pyricularia and allied genera. Mycologia 97: 1002–1011.PubMedCrossRefGoogle Scholar
  71. Cadle-Davidson L (2008) Monitoring pathogenesis of natural Botrytis cinerea infections in developing grape berries. Amer J Enol Vitic 59: 367–395.Google Scholar
  72. Cahill DM, Hardham AR (1994) A dipstick immunoassay for the specific detection of Phytophthora cinnamomi in soils. Phytopathology 84: 1284–1292.CrossRefGoogle Scholar
  73. Caiazzo R, Tarantino P, Porrone G, Lahoz E (2006) Detection and early diagnosis of Peronospora tabacina Adam in tobacco plant with systemic infection. J Phytopathol 154: 432–435.CrossRefGoogle Scholar
  74. Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Critical Rev Microbiol 31: 91–99.CrossRefGoogle Scholar
  75. Camele I, Marcone C, Cristinzio G (2005) Detection and identification of Phytophthora species in southern Italy by RFLP and sequence analysis of PCR-amplified nuclear ribosomal DNA. Eur J Plant Pathol 113: 1–14.CrossRefGoogle Scholar
  76. Campanile G, Schena L, Luisi N (2008) Real-time PCR identification and detection of Fuscoporia torulosa in Quercus ilex. Plant Pathol 57: 76–83.Google Scholar
  77. Cao T, Tewari J, Strelkov E (2007) Molecular detection of Plasmodiophora brassicae, causal agent of clubroot of crucifers in plant and soil. Plant Dis 91: 80–87.CrossRefGoogle Scholar
  78. Carzaniga R, Fiocca D, Bowyer P, O’Connell RJ (2002) Localization of melanin in conidia of Alternaria alternata using phage antibodies. Mol Plant-Microbe Interact 15: 216–224.PubMedCrossRefGoogle Scholar
  79. Causin R, Scopel C, Grendene A, Montechio L (2005) An improved method for the detection of Phytophthora cactorum (L.C.) Schröeter in infected plant tissues using SCAR markers. J Plant Pathol 87: 25–35.Google Scholar
  80. Celi FS, Zenilman ME, Shuldiner AR (1993) A rapid and versatile method to synthesize initial standards for competitive PCR. Nucleic Acids Res 21: 1047.PubMedCrossRefGoogle Scholar
  81. Chakraborty V, Basu P, Das R, Saha A, Chakraborty BN (1996) Evaluation of antiserum raised against Pestalotiopsis theae for the detection of grey blight of tea by ELISA. Folia Microbiol 41: 413–418.CrossRefGoogle Scholar
  82. Chandelier A, Ivors K, Garbelotto M, Zini J, Laurent F, Cavelier M (2006) Validation of a real-time PCR method for the detection of Phytophthora ramorum. Bull OEPP/EPPO 36: 409–414.CrossRefGoogle Scholar
  83. Chang GH, Yu RC (1997) Rapid immunoassay of fungal mycelia in rice and corn. J Chinese Agric Chem Soc 35: 533–539.Google Scholar
  84. Chee HY, Kim WG, Cho WD (1998) Detection of Plasmodiophora brassicae by using polymerase chain reaction. Kor J Plant Pathol 14: 589–593.Google Scholar
  85. Chen W, Gray LE, Grau CR (1996) Molecular differentiation of fungi associated with brown stem rot and detection of Phialophora gregata in resistant and susceptible soybean cultivars. Phytopathology 86: 1140–1148.CrossRefGoogle Scholar
  86. Chen LC, Chen TZ, Chen HL, Yeh H (1998) Establishment of molecular markers for detection and diagnosis of Botrytis cinerea and B. elliptica. Plant Pathol Bull 7: 177–188.Google Scholar
  87. Chen Y-Y, Conner RL, Gillard CL, Boland GJ, Babcock C, Chang K-F, Hwang SF, Balasubramanian PM (2007) A specific and sensitive method for the detection of Colletotrichum lindemuthianum in dry bean tissue. Plant Dis 91: 1271–1276.CrossRefGoogle Scholar
  88. Chen R-S, Chu C, Cheng C-W, Chen W-Y, Tsay J-G (2008) Differentiation of two powdery ­mildews of sunflower (Helianthus annuus) by a PCR-mediated method based on ITS sequences. Eur J Plant Pathol 121: 1–8.CrossRefGoogle Scholar
  89. Chilvers MI, duToit LJ, Peever TL (2007) A real-time quantitative PCR assay for Botrytis spp. that cause neck rot of onion. Plant Dis 91: 599–608.CrossRefGoogle Scholar
  90. Chu PWG, Waterhouse PM, Martin RR, Gerlach WL (1989) New approaches to the detection of microbial plant pathogens. Biotechnol Genet Eng Rev 7: 45–111.Google Scholar
  91. Cilliers AJ, Swart AJ, Wingfield MJ (1994) Selective medium for isolating Lasidiplodia theobromae. Plant Dis 78: 1052–1055.CrossRefGoogle Scholar
  92. Cipriani MG, Schena L, Sialer MMF, Gallitelli D (2000) Characterization and cloning of a molecular probe for diagnosis of Verticillium spp. Atti Gionrate fitopatologiche 2: 551–558.Google Scholar
  93. Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J Gen Virol 34: 475–483.PubMedCrossRefGoogle Scholar
  94. Clear RM, Patrick SK (1992) A simple medium to aid the identification of Fusarium moniliforme, F. proliferatum and F. subglutinans. J Food Protect 55: 120–122.Google Scholar
  95. Coff C, Poupara P, Xiao Q, Garner A, Lund V (1998) Sequence of a plastocyanin cDNA from wheat and the use of the gene product to determine serological tissue degradation after infection with Pseudocercosporella herpotrichoides. J Phytopathol 146: 11–17.CrossRefGoogle Scholar
  96. Colas V, Lacourt I, Ricci P, Vanlerberghe-Masulli F, Venard P, Poupet A, Panabieres F (1998) Diversity of virulence in Phytophthora parasitica in tobacco as reflected by nuclear RFLPs. Phytopathology 88: 205–212.PubMedCrossRefGoogle Scholar
  97. Cooke DEL, Schena L, Cacciola SO (2007) Tools to detect, identify and monitor Phytophthora species in natural ecosystems. J Plant Pathol 89: 145–160.Google Scholar
  98. Coolong TW, Walcott RR, Randle WM (2008) Quantitative real-time polymerase chain reaction assay for Botrytis aclada in onion bulb tissues. HortScience 43: 408–413.Google Scholar
  99. Cooper B, Eckert D, Andon NL, Yates JR (2003) Investigative proteomics: Identification of an unknown virus from infected plants using mass spectrometry. J Amer Soc Mass Spectro 14: 736–741.CrossRefGoogle Scholar
  100. Correll JC, Puhalla JE, Schneider RW (1986a) Identification of Fusarium oxysporum f.sp. apii on the basis of colony size, virulence and vegetative compatibility. Phytopathology 76: 396–400.CrossRefGoogle Scholar
  101. Correll JC, Puhalla JE, Schneider RW (1986b) Vegetative compatibility of groups among nonpathogenic root colonizing strains of Fusarium oxysporum. Canad J Bot 64: 2358–2361.CrossRefGoogle Scholar
  102. Correll JC, Klittich, CJR, Leslie JF (1987) Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77: 1640–1646.CrossRefGoogle Scholar
  103. Côté MJ, Tardif MC, Meldrum AJ (2004) Identification of Monilinia fructigena, M. fructicola, M. laxa and Monilia polystroma on inoculated and naturally infected fruit using multiplex PCR. Plant Dis 88: 1219–1225.CrossRefGoogle Scholar
  104. Coutts RHA, Covelli L, Di Serio F, Citir A, Açikgöz S, Hernández C, Ragozzino A, Flores R (2004) Cherry chlorotic rusty spot and Amasya cherry disease are associated with a complex pattern of mycoviral-like double stranded RNAs. II Characterization of a new species in the genus Partitivirus. J Gen Virol 85: 3349–3353.CrossRefGoogle Scholar
  105. Cruz P, Buttner MP (2008) Development and evaluation of a real-time quantitative PCR assay for Aspergillus flavus. Mycologia 100: 683–690.PubMedCrossRefGoogle Scholar
  106. Cullen DW, Lees AK, Toth IK, Duncan JM (2002) Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant Pathol 51: 1365–1369.CrossRefGoogle Scholar
  107. Cullen DW, Toth IK, Pitkin Y, Boonham N, Walsh K, Barker I, Lees AK (2005) Use of quantitative molecular diagnostic assays to investigate Fusarium dry rot in potato stocks and soil. Phytopathology 95: 1462–1471.PubMedCrossRefGoogle Scholar
  108. Daayf F, Nicole M, Geiger JP (1995) Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol 101: 69–79.CrossRefGoogle Scholar
  109. Degola F, Berni E, Dall’Asta C, Spotti E, Marchelli R, Ferrero I, Restivo FM (2007) A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus. J Appl Microbiol 103: 409–417.PubMedCrossRefGoogle Scholar
  110. Delcan J, Melgarejo P (2002) Mating behaviour and vegetative compatibility in Spanish populations of Botryotina fuckeliana. Eur J Plant Pathol 108: 391–400.PubMedCrossRefGoogle Scholar
  111. Delfosse P, Reddy AS, Legreve A, Thirumala Devi K, Abdurahaman MD, Maraite H, Reddy DVR (2000) Serological methods for detection of Polymyxa graminis, an obligate root parasite and vector of plant viruses. Phytopathology 90: 537–545.PubMedCrossRefGoogle Scholar
  112. Demontis MA, Cacciola SO, Orru M, Balmas V, Chessa V, Maserti BE, Mascia L, Raudino F, di San Lio GM, Migheli Q (2008) Development of real-time PCR systems based on SYBR® Green I and TaqMan® technologies for specific quantitative detection of Phoma tracheiphila in infected citrus. Eur J Plant Pathol 120: 339–351.CrossRefGoogle Scholar
  113. Derrick KS (1972) Immuno-specific grids for electron microscopy of plant viruses. Phytopathology 62: 753.Google Scholar
  114. Derrick KS (1973) Quantitative assay for plant viruses using serologically specific electron microscopy. Virology 56: 652–653.PubMedCrossRefGoogle Scholar
  115. Dewey FM (1998) Use of monoclonal antibodies to study plant invading fungi particularly Botrytis cinerea and Septoria nodorum. Beit Zucht Bundes Kultur 8: 45–47.Google Scholar
  116. Dewey FM, Brasier CM (1988) Development of ELISA for Ophiostoma ulmi using antigen-coated wells. Plant Pathol 37: 28–35.CrossRefGoogle Scholar
  117. Dewey FM, MacDonald M, Philipps S (1989a) Development of monoclonal antibody ELISA, dot-blot and dipstick immunoassays for Humicola languinosa in rice. J Gen Microbiol 135: 361–374.PubMedGoogle Scholar
  118. Dewey FM, Munday CJ, Brasier CM (1989b) Monoclonal antibodies to specific components of the Dutch elm disease pathogen Ophiostoma ulmi. Plant Pathol 38: 9–20.CrossRefGoogle Scholar
  119. Dewey FM, MacDonald M, Philipps S, Priestley R (1990) Development of monoclonal antibody ELISA and dipstick immunoassays for Penicillium islandicum in rice grains. J Gen Microbiol 136: 753–760.PubMedGoogle Scholar
  120. Dharam Singh, Maheshwari VK (2001) Influence of stack burn disease of paddy on seed health status. Seed Res 29: 205–209.Google Scholar
  121. Dhingra OD, Muchovej JJ (1980) Twin stem abnormality disease of soybean seedlings caused by Sclerotium sp. Plant Dis 64: 176.CrossRefGoogle Scholar
  122. Dhingra OD, Sediyama C, Carraro IM, Ries MS (1978) Behavior of four soybean cultivars to seed infecting fungi in delayed harvest. Fitopatol Brasil 3: 277.Google Scholar
  123. Dobrowolski MP, O’Brien PA (1993) Use of RAPD-PCR to isolate a species-specific DNA probe for Phytophthora cinnamomi. FEMS Microbiol Lett 113: 43–47.PubMedCrossRefGoogle Scholar
  124. Dobrowolski MP, Tommerup IC, Chearer BL, O’Brien PA (2003) Three clonal lineages of Phytophthora cinnamomi in Australia revealed by microsatellites. Phytopatholgy 93: 695–704.CrossRefGoogle Scholar
  125. Doster MA, Michailides TJ (1998) Production of bright greenish yellow fluorescence in figs infected by Aspergillus species in California orchards. Plant Dis 82: 669–673.CrossRefGoogle Scholar
  126. Dowell FE, Boratynski TN, Ykema RE, Dowdy AK, Staten RT (2002) Use of optical sorting to detect wheat kernels infected with Tilletia indica. Plant Dis 86: 1011–1013.CrossRefGoogle Scholar
  127. Drenth A, Wagals G, Smith B, Sendall B, O’Dwyer C, Irvine G, Irwin JAG (2006) Development of a DNA-based method for the detection and identification of Phytophthora species. Austr Plant Pathol 35: 147–159.CrossRefGoogle Scholar
  128. Duffy BK, Weller DM (1994) A semiselective and diagnostic medium for Gauemannomyces graminis var. tritici. Phytopathology 84: 1407–1415.CrossRefGoogle Scholar
  129. Duncan JM (1980) A technique for detecting red stele (Phytophthora fragariae) infection in strawberry stocks before planting. Plant Dis 77: 517–520.Google Scholar
  130. Duncan JM (1990) Phytophthora species attacking strawberry and raspberry. EPPO Bull 20: 107–115.CrossRefGoogle Scholar
  131. Duncan JM, Kennedy DM, Chard J, Ali A, Rankin PA (1993) Control of Phytophthora fragariae on strawberry and raspberry in Scotland by bait tests. In: Ebbels D (ed), Plant Health and the European Single Market, BCPC Symp, pp. 301–305.Google Scholar
  132. Dupont J, Laloui W, Magnin S, Larignon P, Roquebert MF (2000) Phaeoacremonium viticola, a new species associated with Esca disease of grapevine in France. Mycologia 92: 499–504.CrossRefGoogle Scholar
  133. Dushnicky LG, Ballance GM, Summer MJ, MacGregor AW (1998) Detection of infection and host responses in susceptible and resistant wheat cultivars to a toxin-producing isolate of Pyrenophora tritici-repens. Canad J Plant Pathol 20: 19–27.CrossRefGoogle Scholar
  134. Dyer RB, Kendra DF, Brown DW (2006) Real-time PCR assay to quantify Fusarium graminearum wild-type and recombinant mutant DNA in plant material. J Microbiol Meth 67: 534–542.CrossRefGoogle Scholar
  135. Edwards SG, Seddon B (2001) Selective media for the specific Appendix 1 and enumeration of Botrytis cinerea conidia. Lett Appl Microbiol 32: 63–66.PubMedCrossRefGoogle Scholar
  136. Edwards SG, Pirgozliev SR, Hare MC, Jenkinson P (2001) Quantification of trichothecene-producing Fusarium species in harvested grains by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl Environ Microbiol 67: 1575–1580.PubMedCrossRefGoogle Scholar
  137. Edwards J, Constable F, Wiechel T, Salib S (2007) Comparison of the molecular tests-single PCR, nested PCR and quantitative PCR (SYBR® Green and TaqMan®)- for detection of Phaeomoniella chlamydospora during grapevine nursery propagation. Phytopathol Mediterr 46: 58–72.Google Scholar
  138. Eibel P, Wolf GA, Koch AE (2005a) Detection of Tilletia caries, causal agent of common bunt of wheat by ELISA and PCR. J Phytopathol 153: 297–306.CrossRefGoogle Scholar
  139. Eibel P, Wolf GA, Koch AE (2005b) Development and evaluation of an enzyme-linked immunosorbent assay (ELISA) for detection of loose smut of barley (Ustilago nuda). Eur J Plant Pathol 111: 113–124.CrossRefGoogle Scholar
  140. Ekefan EJ, Simons SA, Nwankiti AO, Peters JC (2000) Semi-selective medium for Appendix 1 of Colletotrichum gloeosporioides from soil. Experi Agric 35:313–321.CrossRefGoogle Scholar
  141. Elliot ML, DesJardin EA, Henson JM (1993) Use of a polymerase chain reaction assay to aid in identification of Gauemannomyces graminis var. graminis from different grass hosts. Phytopathology 83: 414–418.CrossRefGoogle Scholar
  142. Elwakil MA, Ghoneem KM (2002) An improved method of seed health testing for detecting the lurked seedborne fungi of fenugreek. Pak J Plant Pathol 1: 11–13.CrossRefGoogle Scholar
  143. Elwakil MA, El-Sherif EM, El-Metwally MA (2007) An innovative method for detecting slow-growing seedborne fungi of peanut. Plant Pathol J 6: 306–311.CrossRefGoogle Scholar
  144. Errampalli S, Saunders J, Cullen DW (2001) A PCR-based method for detection of potato pathogen, Helminthosporium solani in silver scurf-infected tuber tissue and soils. J Microbiol Meth 44: 59–68.CrossRefGoogle Scholar
  145. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. The Amer Phytopathol Soc Press St. Paul, MN, USA.Google Scholar
  146. Eun AJC, Wong S-M (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90: 269–275.PubMedCrossRefGoogle Scholar
  147. Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, von Tiedemann A (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118: 259–274.CrossRefGoogle Scholar
  148. Fahleson J, Lagercrantz U, Hu Q, Steventon LA, Dixelium C (2003) Estimation of genetic variation among Verticillium isolates using AFLP analysis. Eur J Plant Pathol 109: 361–371.CrossRefGoogle Scholar
  149. Feodorova RN (1987) New and improved methods of detecting smuts in wheat and barley seeds. Biul Inst Hodowli i Aklim Ros’lin 201: 253–256.Google Scholar
  150. Ferraris L, Cardinale F, Valentino D, Roggero P, Tamietti G (2004) Immunological discrimination of Phytophthora cinnamomi from other Phytophthora pathogenic on chestnut. J Phytopathol 152: 193–199.CrossRefGoogle Scholar
  151. Förster H, Adaskaveg JE (2000) Early brown rot infections in sweet cherry fruit are detected by Monilinia-specific DNA primers. Phytopathology 90: 171–178.PubMedCrossRefGoogle Scholar
  152. Fouly HM, Wilkinson HT (2000) Detection of Gauemannomyces graminis varieties using polymerase chain reaction with variety-specific primers. Plant Dis 84: 947–951.CrossRefGoogle Scholar
  153. Fountaine JM, Shaw MW, Napier B, Ward E and Fraaije BA (2007) Application of real-time and multiplex polymerase chain reaction assays to study leaf blotch epidemics in barley. Phytopathology 97: 297–303.PubMedCrossRefGoogle Scholar
  154. Fourie PH, Halleen F (2000) Investigation on the occurrence of Phaeomoniella chlamydospora in canes of rootstock mother vines. Austr Plant Pathol 31: 425–426.CrossRefGoogle Scholar
  155. Fraaije BA, Lovell DJ, Rohel EA, Hollomon DW (1999) Rapid detection and diagnosis of Septoria tritici epidemics in wheat using a polymerase chain reaction/PicoGreen assay. J Appl Bacteriol 86: 701–708.CrossRefGoogle Scholar
  156. Francis SA, Roden BC, Adams MJ, Weiland J, Michael A (2007) Comparison of ITS sequences from UK and North American sugar beet powdery mildews and the designation of Erysiphe betae. Mycol Res 111: 204–212.PubMedCrossRefGoogle Scholar
  157. Fraser DE, Shoemaker PB, Ristaino JB (1999) Characterization of isolates of Phytophthora infestans from tomato and potato in North Carolina from 1993 to 1995. Plant Dis 83: 633–638.CrossRefGoogle Scholar
  158. Frederick RD, Snyder KE, Tooley PW, Berthier-Schaad Y, Peterson GI, Bonde MR, Schaad NW, Knorr DA (2000) Identification and differentiation of Tilletia indica and T. walkeri using the polymerase chain reaction. Phytopathology 90: 951–960.PubMedCrossRefGoogle Scholar
  159. Fredlund E, Gidlund A, Olsen M, Borjesson T, Spliid NHH, Simonsson M (2008) Method of evaluation of Fusarium DNA extraction from mycelia and wheat for downstream real-time PCR quantification and correlation to mycotoxin levels. J Microbiol Meth 73: 33–40.CrossRefGoogle Scholar
  160. Freeman S, Maimon M, Pinkas Y (1999) Use of GUS transformants of Fusarium subglutinans for determining etiology of mango malformation disease. Phytopathology 89: 456–461.PubMedCrossRefGoogle Scholar
  161. French-Monar RD, Jones JB, Roberts PD (2006) Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Dis 90: 345–350.CrossRefGoogle Scholar
  162. Fu G, Huang SL, Wei JG, Yuan GQ, Ren JG, Yan WH, Cen ZL (2007) First record of Jatropha podagrica gummosis caused by Botryodiplodia theobromae in China. Austr Plant Dis Notes 2: 75–76.CrossRefGoogle Scholar
  163. Fulton CE, Brown AE (1997) Use of SSU rDNA group I intron to distinguish Monilinia fructicola from M. laxa and M. fructigena. FEMS Microbiol Lett 157: 307–312.PubMedCrossRefGoogle Scholar
  164. Gabor Bk, O’Gara ET, Philip BA, Horan DP, Hardham AR (1993) Specificities of monoclonal antibodies to Phytophthora cinnamomi in two rapid diagnosis assays. Plant Dis 77: 1189–1197.CrossRefGoogle Scholar
  165. Ganley RJ, Bradshaw RE (2000) Rapid identification of polymorphic microsatellite loci in a forest pathogen, Dothistroma pini using anchored PCR. Mycol Res 105: 1075–1078.CrossRefGoogle Scholar
  166. Gao X, Jackson TA, Lambert KN, Li S, Harman GL, Niblack TL (2004) Detection and quantification of Fusarium solani f.sp. glycines in soybean roots with real-time quantitative polymerase chain reaction. Plant Dis 88: 1372–1380.CrossRefGoogle Scholar
  167. Garcia Pedrajas MD, Bainbridge BW, Heale JB, Perez Artés E, Jimanez Diaz Rm (1999) A simple PCR-based method for the detection of the chickpea wilt pathogen Fusarium oxysporum f.sp. ciceris in artificial and natural soils. Eur J Plant Pathol 105: 251–259.CrossRefGoogle Scholar
  168. Garraway MO, Evans R (1984) Fungal Nutrition and Physiology. John Wiley & Sons, New York.Google Scholar
  169. Garrido C, Carbù M, Fernández-Acero FJ, Boonham N, Colyer A, Cantoral JM, Budge G (2009) Development of protocols for detection of Colletotrichum acutatum and monitoring of strawberry anthracnose using real-time PCR. Plant Pathol 58: 43–51.CrossRefGoogle Scholar
  170. Garzón CD, Geiser DM, Moorman GW (2005) Diagnosis and population analysis of Pythium species using AFLP fingerprinting. Plant Dis 89: 81–89.CrossRefGoogle Scholar
  171. Gayoso C, de Ilárduya OM, Pomar F, de Cáceres FM (2007) Assessment of real-time PCR as a method for determining the presence of Verticillium dahliae in different Solanaceae cultivars. Eur J Plant Pathol 118: 199–209.CrossRefGoogle Scholar
  172. Gindrat D, Pezet R (1994) Paraquat, a tool for rapid detection of latent fungal infections and endophytic fungi. J Phytopathol 14: 86–98.CrossRefGoogle Scholar
  173. Giraud T, Fortini D, Levis C, Larmarque C, Leroux P, LoBuglio K, Brygoo Y (1999) Two sibling species of the Botrytis cinerea complex, transposa and vacuma are found in sympatry on numerous host plants. Phytopathology 89: 967–973.PubMedCrossRefGoogle Scholar
  174. Gleason ML, Ghabrial SA, Ferriss RS (1987) Serologicaal detection of Phomopsis longicola in soybean seeds. Phytopathology 77: 371–375.CrossRefGoogle Scholar
  175. Glen M, Smith AH, Langrell SRH, Mohammed CL (2007) Development of nested polymerase chain reaction detection of Mycosphaerella spp. and its application to the study of leaf disease in Eucalyptus plantations. Phytopathology 97: 132–144.PubMedCrossRefGoogle Scholar
  176. Gonzáles E, Sutton TB, Correll JC (2006) Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular and pathogenicity tests. Phytopathology 96: 982–992.PubMedCrossRefGoogle Scholar
  177. González-Jaén MT, Mirete S, Patiño B, López-Errasquín E, Vázquez C (2004) Genetic markers for the analysis of variability and for production of specific diagnostic sequences in fumonisin-producing strains of Fusarium verticillioides. Eur J Plant Pathol 110: 525–532.CrossRefGoogle Scholar
  178. Goodwin PH, Kirkpatrick BC, Duniway JM (1989) Cloned probes for identification of Phytophthora parasitica. Phytopathology 79: 716–721.CrossRefGoogle Scholar
  179. Goodwin PH, English JT, Neber DA, Duniway JM, Kirkpatrick BC (1990) Detection of Phytophthora parasitica from soil and host tissue with a species-specific DNA probe. Phytopathology 80: 277.CrossRefGoogle Scholar
  180. Goodwin SB, Schneider RE, Fry WE (1995) Use of cellulose acetate electrophoresis for rapid identification of allozyme genotypes of Phytophthora infestans. Plant Dis 79: 1181–1185.CrossRefGoogle Scholar
  181. Gough KC, Li Y, Vaugan TJ, Williams AJ, Cockburn W, Whitelam GC (1999) Selection of phage antibodies to surface epitopes of Phytophthora infestans. J Immunol Meth 228: 97–108.CrossRefGoogle Scholar
  182. Griffin DW, Kellog CA, Peak KK, Shinn EA (2002) A rapid and efficient assay for extracting DNA from fungi. Lett Appl Microbiol 34: 210–214.PubMedCrossRefGoogle Scholar
  183. Grote D, Olmos A, Kofoet A, Tuset JJ, Bertolini E, Cambra M (2000) Detection of Phytophthora nicotianae by PCR. Bull OEPP 30: 539–541.CrossRefGoogle Scholar
  184. Grote D, Olmos A, Kofoet A, Tuset JJ, Bertolini E, Cambra M (2002) Specific and sensitive detection of Phytophthora nicotianae by simple and nested PCR. Eur J Plant Pathol 108: 197–207.CrossRefGoogle Scholar
  185. Gubis J, Hudcovicová M, Klčová L, Červená V, Bojnanská K, Kraic J (2004) Detection of leaf blotches- causal agents in barley leaves and grains. Czech J Genet Plant Breed 40: 111–117.Google Scholar
  186. Guglielmo F, Bergemann SE, Gonthier P, Nicolotti G, Garbelotto M (2007) A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees. J Appl Microbiol 103: 1490–1507.PubMedCrossRefGoogle Scholar
  187. Guillemete T, Iacomi-Vasilescu B, USAMV (2004) Conventional and real-time PCR-based assay for detecting pathogenic Alternaria brassicae in cruciferous seed. Plant Dis 88: 490–496.CrossRefGoogle Scholar
  188. Guitierrez WA, Shew HD (1998) Identification and quantification of ascospores as the primary inoculum for collar rot of greenhouse-produced tobacco seedlings. Plant Dis 82: 485–490.CrossRefGoogle Scholar
  189. Guo J-R, Schnieder F, Beyer M, Verreet J-A (2005) Rapid detection of Mycosphaerella graminicola in wheat using reverse transcription-PCR assay. J Phytopathol 153: 674–679.CrossRefGoogle Scholar
  190. Gutierrez LJ, Wang Y, Lutton E, McSpadden Gardner BB (2006) Distribution and fungicide sensitivity of fungal pathogens causing anthracnose-like lesions in tomatoes grown in Ohio. Plant Dis 90: 397–403.CrossRefGoogle Scholar
  191. Gwinn KD, Collins-Shepard MH, Reddick BB (1991) Tisssue print-immunoblot, an accurate method for the detection of Acremonium coenophialum in tall fescue. Phytopathology 81: 747–748.CrossRefGoogle Scholar
  192. Hahn F (2002) Fungal spore detection on tomatoes using spectral fourier signatures. Biosystem Eng 81: 249–259.CrossRefGoogle Scholar
  193. Hamer J, Farrel L, Orbach M, Valent A, Chumley F (1989) Host species specific conservation of a family of repeated DNA sequences in the genome of a fungal pathogen. Proc. Nat Acad Sci USA 86: 9981–9985.PubMedCrossRefGoogle Scholar
  194. Hampson MC (1993) History, biology and control of potato wart disease in Canada. Canad J Plant Pathol 15: 223–224.CrossRefGoogle Scholar
  195. Han SS, Ra DS, Nelson RJ (1995) Relationship between DNA fingerprints and virulence of Pyricularia grisea from rice and new hosts in Korea. Internat Rice Res Notes 20(1): 26–27.Google Scholar
  196. Hardham AR, Suzaki E, Perkin JL (1986) Monoclonal antibodies to isolate- species- and genus-specific components on the surface of zoospores and cysts of the genus Phytophthora cinnamomi. Canad J Bot 64: 311–321.CrossRefGoogle Scholar
  197. Hardham AR, Gubler F, Duniec J, Elliott J (1991) A review of methods for the production and use of monoclonal antibodies to study zoosporic plant pathogens. J Microscopy 162: 305–318.CrossRefGoogle Scholar
  198. Harmon PF, Dunkle LD, Latin R (2003) A rapid PCR-based method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Dis 87: 1072–1076.CrossRefGoogle Scholar
  199. Harrison JG, Barker H, Lowe R, Rees EA (1990) Estimation of amounts of Phytophthora infestans mycelium in leaf tissue by enzyme-linked immunsorbent assay. Plant Pathol 39: 274–277.CrossRefGoogle Scholar
  200. Harrison JG, Rees EA, Barker H, Lowe R (1993) Detection of spore balls of Spongospora subterranea on potato tubers by enzyme-linked immunosorbent assay. Plant Pathol 42: 181–186.CrossRefGoogle Scholar
  201. Harvey HP, Ophel-Keller K (1996) Quantification of Gauemannomyces graminis var. tritici in infected roots and arid soil using slot-blot hybridization. Mycol Res 100: 962–970.CrossRefGoogle Scholar
  202. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth & Bisby’s Dictionary of the Fungi, CAB Internat, Oxon, UK.Google Scholar
  203. Hayden KJ, Rizozo D, Tse J, Garbelotto M (2004) Detecction and quantification of phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology 94: 1075–1083.PubMedCrossRefGoogle Scholar
  204. Hayden K, Ivors K, Wilkinson C, Garbelotto M (2006) TaqMan chemistry for Phytophthora ramorum detection and quantification with comparison of diagnostic methods. Phytopathology 96: 846–854.PubMedCrossRefGoogle Scholar
  205. Henriquez JL, Sugar D, Spotts RA (2004) Etiology of bull’s eye rot of pear caused by Neofabraea spp. in Oregon, Washington and California. Plant Dis 88: 1134–1138.CrossRefGoogle Scholar
  206. Henson JM, French R (1993) The polymerase chain reaction and plant disease diagnosis. Ann Rev Phytopathol 31: 81–109.CrossRefGoogle Scholar
  207. Henson JM, Goins T, Grey W, Mathre DE, Elliott ML (1993) Use of polymerase chain reaction to detect Gauemannomyces graminis DNA in plants grown in artificially and naturally infested soil. Phytopathology 83: 283–297.CrossRefGoogle Scholar
  208. Hermansen A, Herrero M-L, Gausla E, Razzaghian J, Naerstad R (2007) Pythium species associated with cavity spot on carrots in Norway. Ann Appl Biol 150: 115–121.CrossRefGoogle Scholar
  209. Hewett PD (1977) Pretreatment in seed health testing: hypochlorite in the 2,4-D-blotter for Leptosphaeria maculans (Phoma lingam). Seed Sci Tech 5: 599.Google Scholar
  210. Hogg AC, Johnston RH, Dyer AT (2007) Applying real-time quantitative PCR to Fusarium crown rot of wheat. Plant Dis 91: 1021–1028.CrossRefGoogle Scholar
  211. Holtz BA, Karu AF, Weinhold AR (1994) Enzyme-linked immunosorbent assay for detection of Thielaviopsis basicola. Phytopathology 84: 977–984.CrossRefGoogle Scholar
  212. Hood ME, Shew HD (1996) Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology 86: 704–708.CrossRefGoogle Scholar
  213. Hsieh SPY, Huang RZ, Wang TC (1996) Application of tannic acid in qualitative and quantitative growth assay of Rhizoctonia spp. Plant Pathology Bull 5: 100–106.Google Scholar
  214. Hu X, Nazar RN, Robb J (1993) Quantification of Verticillium biomass in wilt disease development. Physiol Mol Plant Pathol 42: 23–36.CrossRefGoogle Scholar
  215. Hu CJ, Li YR, Wei YW, Huang SL (2008) A PCR-based method to detect Sclerotium hydrophilum in infected rice leaf sheaths. Austr Plant Pathol 37: 40–42.CrossRefGoogle Scholar
  216. Hughes kJD, Inman AJ, Beales PA, Cook RIA, Fulton CE, McReynolds ADK (1998) PCR-based detection of Phytophthora fragariae in raspberry and strawberry roots. Brighton Crop Protect Conf Pest Dis 2: 687–692.Google Scholar
  217. Hughes KJD, Giltrap PM, Barton VC, Hobden E, Tomilson JA, Barber P (2006) On-site real-time PCR detection of Phytophthora ramorum causing dieback of Parrotia persica in the UK. Plant Pathology 55: 813.CrossRefGoogle Scholar
  218. Hussain S, Lees AK, Duncan JM, Cooke DEL (2005) Development of a species-specific and sensitive detection assay for Phytophthora infestans and its application for monitoring of inoculum in tubers and soil. Plant Pathol 54: 373–382.CrossRefGoogle Scholar
  219. Hyakumachi M, Priyatmojo A, Kubota M, Fukui H (2005) New anastomosis groups AG-T and AG-U of binucleate Rhizoctonia spp. causing root and stem rot of cut-flower and miniature roses. Phytopathology 95: 784–792.PubMedCrossRefGoogle Scholar
  220. Hyun JW, Peres NA, Yi S-Y, Timmer LW, Kim KS, Kwon H-M, Lim H-C (2007) Development of PCR assays for the identification of species and pathotypes of Elsinoe causing scab on ­citrus. Plant Dis 91: 865–870.CrossRefGoogle Scholar
  221. Iacomi-Vasilescu B, Blancard D, Guénard M, Molinero-Demilly V, Laurent E, Simoneau P (2002) Development of a PCR-based diaganostic assay for detecting pathogenic Alternaria species in cruciferous seeds. Seed Sci Technol 30: 87–95.Google Scholar
  222. Infantino A, Pucci A (2005) A PCR-based assay for the detection and identification of Pyrenochaeta lycopersici. Eur J Plant Pathol 112: 337–437.CrossRefGoogle Scholar
  223. Ingle CA, Kushner SR (1996) Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proc Natl Acad Sci USA 93: 12926–12931.PubMedCrossRefGoogle Scholar
  224. International Seed Testing Association (ISTA) (1994) ISTA Handbook on Seed Health Testing, Section 2, Working Sheets. ISTA, Zurich, Switzerland.Google Scholar
  225. International Seed Testing Association (ISTA) (1996) International rules for seed testing. Proc. Internat Seed Testing Assoc 31: 1.Google Scholar
  226. Ioos R, Iancu G (2008) European collaborative studies for the validation of PCR-based detection tests targeting regulated fungi and oomycetes. EPPO Bull 38: 198–204.CrossRefGoogle Scholar
  227. Ivors KL, Tse J, Garbelotto M (2002) TaqMan PCR for detection of Phytophthora DNA in environmental plant samples. Proc Sudden Oak Death, Sci Symp, Montery, CA, USA, p. 56.Google Scholar
  228. Ivors KL, Garbelotto M, Vries IDE, Ruyter-Spira C, Hekkert B Te, Rosenzweig N, Bonants P (2006) Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forests and European nursery populations. Mol Ecol 15: 1493–1505.PubMedCrossRefGoogle Scholar
  229. Jackson EW, Avant JB, Overturf KE, Bonman JM (2006) A quantitative assay of Puccinia coronata f.sp. avenae DNA in Avena sativa. Plant Dis 90: 692–636.CrossRefGoogle Scholar
  230. Jacobson DJ, Gordon TR (1990) Further investigations of vegetative compatibility within Fusarium oxysporum f.sp. melonis. Canad J Bot 68: 1245–1248.CrossRefGoogle Scholar
  231. Jamaux I, Spire D (1994) Development of a polyclonal antibody-based immunoassay for the early detection of Sclerotinia sclerotiorum in rapeseed petals. Plant Pathol 43: 847–852.CrossRefGoogle Scholar
  232. Jamaux I, Spire D (1999) Comparison of responses of ascospores and mycelium by ELISA with anti-mycelium and anti-ascospore antisera for the development of a method to detect Sclerotinia sclerotiorum on petals of oilseed rape. Ann Appl Biol 134: 171–179.CrossRefGoogle Scholar
  233. Jayasinghe CK, Fernando THPS (1998) Growth at different temperatures and on fungicide-amended media: two characteristics to distinguish Colletotrichum species pathogenic to rubber. Mycopathologia 143: 93–95.PubMedCrossRefGoogle Scholar
  234. Jerne NK (1960) Immunological speculations. Annu Rev Microbiol 14: 341–358.PubMedCrossRefGoogle Scholar
  235. Joaquim RR, Rowe RC (1990) Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 80: 1160–1166.CrossRefGoogle Scholar
  236. Joaquin RR, Rowe RC (1991) Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 81: 552–558.CrossRefGoogle Scholar
  237. Johansen DA (1940) Plant Microtechnique. McGraw-Hill Book Co Inc., New York.Google Scholar
  238. Johnson RD, Johnson L, Kohmoto K, Otani H, Lane CR, Kodama M (2000) A polymerase chain reaction-based method to specifically detect Alternaria alternata apple pathotype (A. mali), the causal agent of Alternaria blotch of apple. Phytopathology 90: 973–976.PubMedCrossRefGoogle Scholar
  239. Judelson HS, Messenger-Routh B (1996) Quantitation of Phytophthora cinnamomi in avocado roots using a species-specific DNA probe. Phyotpathology 86: 763–768.CrossRefGoogle Scholar
  240. Justesen AF, Hansen HJ, Pinnschmidt HO (2008) Quantification of Pyrenophora graminea in barley seed using real-time PCR. Eur J Plant Pathol 122: 253–263.CrossRefGoogle Scholar
  241. Jyan M-H, Huang L-C, Ann P-J, Liou R-F (2002) Rapid detection of Phytophthora infestans by PCR. Plant Pathol Bull 11: 45–56.Google Scholar
  242. Kageyama K, Kobayashi M, Tomita M, Kubota N, Suga H, Hyakumachi M (2002) Production and evaluation of monoclonal antibodies for the detection of Pythium sulcatum in soil. J Phytopathol 150: 97–104.CrossRefGoogle Scholar
  243. Kaminski JE, Demoeden PH, O’Neill NR, Wetzel II HC (2005) A PCR-based method for the detection of Ophiosphaerella agrostis in creeping bentgrass. Plant Dis 89: 980–985.CrossRefGoogle Scholar
  244. Karajeh MR (2006) Seed transmission of Verticillium dahliae in olive as detected by a highly sensitive nested PCR-based assay. Phytopathol Mediterr 45: 15–23.Google Scholar
  245. Karolewski Z, Fitt BDL, Latunde-Dada AO, Foster SJ, Todd AD, Downes K, Evans N (2006) Visual and PCR assessment of light leaf spot (Pyrenopezziza brassicae) on winter oilseed rape (Brassica napus) cultivars. Plant Pathol 55: 387–400.CrossRefGoogle Scholar
  246. Karpovich-Tate N, Spanu P, Dewey FM (1998) Use of monoclonal antibodies to determine biomass of Cladosporium fulvum in infected tomato leaves. Molec Plant-Pathogen Interact 11: 710–716.CrossRefGoogle Scholar
  247. Karthikeyan M, Radhika K, Bhaskaran R, Mathiyazhagan S, Samiyappan R, Velazahahan R (2006) Rapid detection of Ganoderma disease of coconut and assessment of inhibition effect of various control measures by immunoassay and PCR. Plant Protect Sci 42: 49–57.Google Scholar
  248. Kaufmann PJ, Weidemann GJ (1996) Isozyme analysis of Colletotrichum gloeosporioides from five host genera. Plant Dis 80: 1289–1293.CrossRefGoogle Scholar
  249. Kawaradani M, Kusakari S, Morita S, Tanaka Y (1994) The enzyme activities in eggplant infected with soilborne diseases and application to diagnosis for diseases. Ann. Phytopathol Soc Jpn 60: 507–613.CrossRefGoogle Scholar
  250. Kawaradani M, Kusakari S, Kimura M, Takizawa Hm Nishihashi H (1998) A new method for measuring ß1,3-glucanase activity using p-nitrophenyl-ß-D laminarintetraside as a substrate to diagnose Verticillium wilt of egg plant. Ann Phytopathol Soc Jpn 64: 489–493.CrossRefGoogle Scholar
  251. Kawasaki ES, Chehab FF (1994) Analysis of gene sequences by hybridization of PCR-amplified DNA to covalently bound oligonucleotides probes.The reverse dot-blot method. Methods Mol Biol 28: 225–236.PubMedGoogle Scholar
  252. Keer JT, Birceh L (2003) Molecular methods for assessment of bacterial viability. J Microbiol Meth 53: 175–183.CrossRefGoogle Scholar
  253. Keiper FJ, Hayden MJ, Wallwork H (2006) Development of sequence tagged microsatellites for the barley scald pathogen Rhynchosporium secalis. Mol Ecol Notes 6: 543–546.CrossRefGoogle Scholar
  254. Keiper FJ, Capio E, Grcic M, Wallwork H (2007) Development of sequence tagged microsatellites for the barley net blotch pathogen Pyrenophora teres. Mol Ecol Notes 7: 664–666.CrossRefGoogle Scholar
  255. Keiper FJ, Grcic M, Capio E, Wallwork H (2008) Diagnostic microsatellite markers for the barley net blotch pathogens Pyrenophora teres f.sp. maculata and Pyrenophora teres f. teres. Austr Plant Pathol 37: 428–430.CrossRefGoogle Scholar
  256. Kellens JTC, Peumans WJ (1991) Biochemical and serological comparison of lectins from different anastomosis groups of Rhizoctonia solani. Mycol Res 95: 1235–1241.CrossRefGoogle Scholar
  257. Kendall JJ, Hollomon DW, Sellely A (1998) Immunodiagnosis as an aid to timing of fungicide sprays for the control of Mycosphaerella graminicola on winter wheat in the UK. Brighton Crop Protect Conf 2: 701–706.Google Scholar
  258. Kennedy R, Wakeham AJ, Cullington JE (1999) Production and immunodetection of ascospores of Mycosphaerella brassicola: Ringspot of vegetable crucifers. Plant Pathol 48: 297–307.CrossRefGoogle Scholar
  259. Kessel GJT, de Haas BH, Lombaers-van der Plas CH, Meijer EMJ, Dewey FM, Goudriaan J, van der Werf W, Köhl J (1999) Quantification of mycelium of Botrytis spp. and the antagonist Ulocladium atrum in necrotic leaf tissue of cyclamen and lily by fluorescence microscopy and image analysis. Phytopathology 89: 868–876.PubMedCrossRefGoogle Scholar
  260. Khaldeeva EV, Medyantseva EP, Glushko NI, Budnikov GK (2001) Amperometric immuno-enzyme sensor for evaluating the degree of infection of vegetable crops by phytopathogenic fungi. Agrokshimiya 5: 81–86.Google Scholar
  261. Khanzada AK, Mathur SB (1988) Influence of extraction rate and concentration of stain on loose smut infection of wheat seed. Pak J Agric Res 9: 218–222.Google Scholar
  262. Khanzada AK, Rennie WJ, Mathur SB, Neergaard P (1980) Evaluation of two routine embryo test procedures for assessing the incidence of loose smut infection in seed samples of wheat (Triticum aestivum). Seed Sci Technol 8: 363.Google Scholar
  263. Kim HJ, Lee YS (2001) Development of an in planta molecular marker for the detection of Chinese cabbage (Brassica campestris pekinensis) club root pathogen Plasmodiophora brassicae. J Microbiol 39: 56–61.Google Scholar
  264. Kiss L, Takamatsu S, Cunnington JH (2005) Molecular identification of Oidium neolycopersici as the causal agent of the recent tomato powdery mildew epidemics in North America. Plant Dis 89: 491–496.CrossRefGoogle Scholar
  265. Kitagawa T, Sakamoto Y, Furumi K, Ogura H (1989) Novel enzyme immunoassays for specific detection of Fusarium oxysporum f.sp. cucumerinum and for general detection of various Fusarium species. Phytopathology 79: 162–165.CrossRefGoogle Scholar
  266. Klassen GR, Blacerzak M, de Cock AWAM (1996) 5S ribosomal RNA gene spacers as species-specific probes for eight species of Pythium. Phytopathology 86: 581–587.CrossRefGoogle Scholar
  267. Klemsdal SS, Herrero ML, Wanner LA, Lund G, Hermansen A ( 2008) PCR-based identification of Pythium spp. causing cavity spot in carrots and sensitive detection in soil samples. Plant Pathol 57: 877–886.CrossRefGoogle Scholar
  268. Klich MA, Mullaney EJ (1987) DNA restriction enzyme fragment polymorphism as a tool for rapid differentiation of Aspergillus flavus from Aspergillus oryzae. Exp Mycol 11: 170–175.CrossRefGoogle Scholar
  269. Knoll S, Vogel RF, Niessen L (2002) Identification of Fusarium graminearum in cereal samples by DNA Detection Test StripsTM. Lett Appl Microbiol 34: 144–148.PubMedCrossRefGoogle Scholar
  270. Ko SS, Kunimoto RK, Ko WH (2001) A simple technique for purifying fungal cultures contaminated with bacteria and mites. J Phytopathol 149: 509–510.CrossRefGoogle Scholar
  271. Koch G, Kohler W (1990) Isozyme variation and genetic distances of Erysiphe graminis DC. formae speciales. J Phytopathol 129: 89.CrossRefGoogle Scholar
  272. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predetermined specificity. Nature (Lond) 256: 495–497.CrossRefGoogle Scholar
  273. Konstantinova P, Bonants PJM, Genter-Pelzer MPE van, Zouwen P van der, Bulk R van den (2002) Development of specific primers for detection and identification of Alternaria spp. in carrot material by PCR and comparison with blotter and plating assays. Mycol Res 106: 23–33.CrossRefGoogle Scholar
  274. Korolev N, Elad Y, Katan T (2008) Vegetative compatibility grouping in Botrytis cinerea using sulphate non-utilizing mutants. Eur J Plant Pathol 122: 369–383.CrossRefGoogle Scholar
  275. Kox LFF, van Brouwershaven IR, van de Vossenberg BTLH, van den Beld HE, Bonants PJM, de Gruyter J (2007) Diagnostic values and utility of immunological, morphological and molecular methods for in planta detection of Phytophthora ramorum. Phytopathology 97: 1119–1129.PubMedCrossRefGoogle Scholar
  276. Kozlakidis Z, Covelli L, DiSerio F, Citir A, Açikgöz S, Hernández C, Ragozzino A, Flores R, Coutts RHA (2006) Molecular characterization of the largest mycoviral-like double-stranded RNAs associated with Amasya cherry disease, a disease of presumed fungal etiology. J Gen Virol 87: 3113–3117.PubMedCrossRefGoogle Scholar
  277. Kozlakidis Z, Citir A, Açikgöz S, Coutts RHA (2007) Development of a reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of Amasya cherry disease. Plant Pathol 56: 1032–1035.CrossRefGoogle Scholar
  278. Kraft JM, Boge WL (1994) Development of an antiserum to quantify Aphanomyces euteiches in resistant pea lines. Plant Dis 78: 179–183.CrossRefGoogle Scholar
  279. Krátká J, Pekárova-Kyněrová B, Kudlíkova I, Slováček J, Zemánková M (2002) Utilization of immunochemical methods for detection of Colletotrichum spp. in strawberry. Plant Protect Sci 38: 55–63.Google Scholar
  280. Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Host-Jenson A (2007) DNA microarray to detect and identify trichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol 102: 1060–1070.PubMedGoogle Scholar
  281. Kroon LPNM, Verstappen ECP, Kox LFF, Flier WG, Bonants PJM (2004) A rapid diagnostic test to distinguish between American and European populations of Phytophthora ramorum. Phytopathology 94: 613–620.PubMedCrossRefGoogle Scholar
  282. Kushalappa AC, Lui LH (2002) Volatile fingerprinting (SPME-GC-FID) to detect and discriminate diseases of potato tubers. Plant Dis 86: 131–137.CrossRefGoogle Scholar
  283. Kutilek V, Lee R, Kitto GB (2001) Development of immunochemical techniques for detecting Karnal bunt in wheat. Food Agric Immunol 13: 103–114.CrossRefGoogle Scholar
  284. Láday M, Szécsi Á (2001) Distinct electrophoretic isozyme profiles of Fusarium graminearum and closely related species. System Appl Microbiol 24: 67–75.CrossRefGoogle Scholar
  285. Láday M, Szécsi Á (2002) Identification of Fusarium species by isozyme analysis. Acta Microbiol Immunol Hung 49: 321–330.PubMedCrossRefGoogle Scholar
  286. Lamour K, Finley L (2006) A strategy for recovering high quality genomic DNA from a large numer of Phytophthora isolates. Mycologia 98: 514–517.PubMedCrossRefGoogle Scholar
  287. Langerak CJ, van den Bulk RW, Franken AAJM (1996) Indexing seeds for pathogens. Adv Bot Res 23: 171–215.CrossRefGoogle Scholar
  288. Langrell SRH, Barbara dJ (2001) Magnetic capture hybridization for improved PCR detection of Nectria galligena from lignified apple extracts. Plant Molec Biol re 19: 5–11.CrossRefGoogle Scholar
  289. Lardner R, Stummer BE, Sosnowski MR, Scott ES (2005) Molecular identification and detection of Eutypa lata in grapevine. Mycol Res 109: 799–808.PubMedCrossRefGoogle Scholar
  290. Larkin RP, Ristaino JB, Campbell CL (1995) Detection and quantification of Phytophthora capsici. Phytopathology 85: 1057–1063.CrossRefGoogle Scholar
  291. Larsen JE, Hollingsworth CR, Flor J, Dornbusch MR, Simpson NL, Samac DA (2007) Distribution of Phoma sclerotioides on alfalfa and winter wheat crops in the North Central United States. Plant Dis 91: 551–558.CrossRefGoogle Scholar
  292. Leach JE, White FE (1991) Molecular probes for disease diagnosis and monitoring. In: Khush GS, Toenniessen GH (ed) Rice Biotechnology, CAB Internat UK and Internat Rice Res Inst, Philippines pp. 281–307.Google Scholar
  293. Lecomte P, Péros JP, Blancard D, Bastien N, Délye C (2000) PCR assays that identify the grapevine die-back fungus Eutypa lata. Appl Enviro Microbiol 66: 4475–4480.CrossRefGoogle Scholar
  294. Lee HK, Tewari JP (2001) A PCR-based assay to detect Rhynchosporium secalis in barley seed. Plant Dis 85: 220–225.CrossRefGoogle Scholar
  295. Lee HK, Tewari JP, Turkington TK (2001) Symptomless infection of barley seed by Rhynchosporium secalis. Canad J Plant Pathol 23: 315–317.CrossRefGoogle Scholar
  296. Lee HK, Tewari JP, Turkington TK (2002) Quantification of seedborne infection by Rhynchosporium secalis in barley using competitive PCR. Plant Pathol 51: 217–224.CrossRefGoogle Scholar
  297. Lees AK, van de Graaf P, Wale S (2008) The identification and detection of Spongospora subterranea and factors affecting infection and disease. Amer J Potato Res 85: 247–252.CrossRefGoogle Scholar
  298. Lees AK, Sullivan L, Cullen DW (2009) A quantitative polymerase chain reaction assay for the detection of Polyscytalum pustulans, the cause of skin spot disease of potato. J. Phytopathol 157: 154–158.CrossRefGoogle Scholar
  299. Leisova L, Kucera L, Minarikova V, Ovesna J (2005) AFLP-based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathol 54: 66–73.CrossRefGoogle Scholar
  300. Leisova L, Minarikova V, Kucera L, Ovesna J (2006) Quantification of Pyrenophora teres in infected barley leaves using real-time PCR. J Microbiol Meth 67: 446–455.CrossRefGoogle Scholar
  301. Leslie JP (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31: 127–150.PubMedCrossRefGoogle Scholar
  302. Leung H, Williams PH (1986) Enzyme polymorphism and genetic differentiation among geographic isolates of the rice blast fungus. Phytopathology 76: 778.CrossRefGoogle Scholar
  303. Lévesque CA, Vrain TC, De Boer SM (1994) Development of a species-specific probe for Pythium ultimum using amplified ribosomal DNA. Phytopathology 84: 474–478.CrossRefGoogle Scholar
  304. Lévesque CA, Harlton CE, de Cock AWAM (1998) Identification of some oomycetes by reverse dot-blot hybridization. Phytopatholgy 88: 213–222.CrossRefGoogle Scholar
  305. Levy M, Romano J, Marchetti MA, Hamer JE (1991) DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell 3: 95–102.CrossRefGoogle Scholar
  306. Levy L, Lee IM, Hadidi A (1994) Simple and rapid preparation of infected plant tissue extracts for PCR amplification of virus, viroid and MLO nucleic acids. J Virol Meth 49:, 295–304.CrossRefGoogle Scholar
  307. Lewis Ivey ML, Nava-Diaz C, Miller SA (2004) Identification and management of Colletotrichum acutatum on immature bell pepper. Plant Dis 88: 1198–1204.CrossRefGoogle Scholar
  308. Licciardello G, Grasso FM, Bella P, Cirvilleri G, Grimaldi V, Catara V (2006) Identification and detection of Phoma tracheiphilla, causal agent of citrus mal secco disease by real-time polymerase chain reaction. Plant Dis 90: 1523–1530.CrossRefGoogle Scholar
  309. Lievens B, Thomma BPHJ (2005) Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95: 1374–1380.PubMedCrossRefGoogle Scholar
  310. Lievens B, Brouwer M, Vanachter ACRC, Lévesque CA, Cammue BPA, Thomma BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogen. FEMS Microbiol Lett 223: 113–122.PubMedCrossRefGoogle Scholar
  311. Lievens B, Hansen IRM, Vanachter ACRC, Cammue BPA, Thomma BPHJ (2004) Root and foot rot on tomato caused by Phytophthora infestans detected in Belgium. Plant Dis 88: 86.CrossRefGoogle Scholar
  312. Lievens B, Claes L, Vanachter ACRC, Bruno PA, Cammue BPA, Thomma BPHJ (2006) Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis. FEMS Microbiol Lett 255: 129–139.PubMedCrossRefGoogle Scholar
  313. Lievens B, Claes L, Vakalounakis DJ, Vanachter ACRC, Thomma BPHJ (2007) A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f.sp. cucumerinum and f.sp. radicis-cucumerinum. Environ Microbiol 9: 2145–2161.PubMedCrossRefGoogle Scholar
  314. Liew ECY, Maclean DJ, Irwin JAG (1998) Specific PCR-based detection of Phytophthora medicaginis using the intergenic spacer region of the ribosomal DNA. Mycol Res 102: 73–80.CrossRefGoogle Scholar
  315. Lima CS, Pfenning LH, Costa SS, Campos MA, Leslie JF (2008) A new Fusarium lineage within the Gibberella fujikuroi species complex is the main causal agent of mango malformation disease in Brazil. Plant Pathol : Doi: 10.1111.j.1365–3059.2008-01946.xGoogle Scholar
  316. Lima CS, Monteiro JHA, Crespo NC, Costa SS, Leslie JF, Pfenning LH (2009) VCG and AFLP analyses identify the same groups in the causal agents of mango malformation in Brazil. Eur J Plant Pathol 123: 17–26.CrossRefGoogle Scholar
  317. Lin Y-H, Chang J-Y, Liu E-T, Chao C-P, Huang J-W, Chang PL (2009) Development of a molecular marker for specific detection of Fusarium oxysporum f.sp. cubense race 4. Eur J Plant Pathol 123: 353–365.CrossRefGoogle Scholar
  318. Lind V (1990) Isolation of antigens for serological identification of Pseudocercosporella herpotrichoides (Fron)Deighton. J Plant Dis Plant Protect 97: 490–501.Google Scholar
  319. Liu Z, Nickrent DL, Sinclair JB (1990) Genetic relationships among isolates of Rhizoctonia solani anastomosis group-2 based on isozyme analysis. Canad J Plant Pathol 12: 376.CrossRefGoogle Scholar
  320. LoBuglio KF, Pfister DH (2008) A Glomerella species phylogenetically related to Colletotrichum acutatum on Norway maple in Massachussetts. Mycologia 100: 710–715PubMedCrossRefGoogle Scholar
  321. Lovic BR, Martyn RD, Miller ME (1995) Sequence analysis of the ITS regions of rDNA in Monosporascus spp. to evaluate its potential for PCR-mediated detection. Phytopathology 85: 655–661.CrossRefGoogle Scholar
  322. Lu TH, Groth JV (1987) Isozyme detection and variation in Uromyces appendiculatus. Canad J Bot 66: 885.PubMedCrossRefGoogle Scholar
  323. Lübeck M, Poulsen H (2001) UP-PCR cross blot hybridization as a tool for identification of anastomosis groups in the Rhizoctonia solani complex. FEMS Microbiol Lett 201: 83–89.PubMedCrossRefGoogle Scholar
  324. Lyons NF, White JG (1992) Detection of Pythium violae and Pythium sulcatum in carrots with cavity spots using competition ELISA. Ann Appl Biol 120: 235–244.CrossRefGoogle Scholar
  325. Ma, Luo Y, Michailides TJ (2003) Nested PCR assay for detection of Monilinia fructicola in stone fruit orchards and Botryosphaeria dothidea from pistachios in California. J Phytopathol 151: 312–322.CrossRefGoogle Scholar
  326. MacNish GC, O’Brien PA (2005) RAPD-PCR used to confirm that four pectic isozyme (zymograms) groups within the Australian Rhizoctonia solani AG-8 populations are true intraspecific groups. Austr Plant Pathol 34: 245–250.CrossRefGoogle Scholar
  327. MacNish GC, Sweetingham MW (1993) Evidence of stability of pectic zymogram groups within Rhizoctonia solani AG-8. Mycol Res 97: 1056–1058.CrossRefGoogle Scholar
  328. MacNish GC, Carling DE, Brainard KA (1997) Relationship of microscopic and macroscopic vegetative reaction in Rhizoctonia solani and the occurrence of vegetatively compatible populaltions (VCPs) in AG-8. Mycol Res 101: 61–68.CrossRefGoogle Scholar
  329. Magan N, Evans P (2000) Volatiles as an indicator of fungal activity and differentiation between species and the potential use of electronic nose technology for early detection of grain spoilage. J Stored Prod Res 36: 319–340.PubMedCrossRefGoogle Scholar
  330. Maguire JD, Gabrielson RL (1983) Testing techniques for Phoma lingam. Seed Sci Tech 11: 599–605.Google Scholar
  331. Mahuku GS, Platt (Bud) HW, Maxwell P (1999) Comparison of polymerase chain reaction-based method with plating on media to detect and identify Verticillium wilt pathogen of potato. Canad J Plant Pathol 21: 125–131.CrossRefGoogle Scholar
  332. Mangan A (1983) The use of plain water agar for detection of Phoma betae on beet seeds. Seed Sci Technol 6: 925–926.Google Scholar
  333. Marakakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2009) Symptom development, pathogen Appendix 1 and real-time QPCR quantification as factors for evaluating the resistance of olive cultivars to Verticillium pathotypes. Eur J Plant Pathol 124: 603–611.CrossRefGoogle Scholar
  334. Marasas WFO, Ploetz RC, Wingfield MJ, Wingfield BD, Steenkamp ET (2006) Mango malformation disease and the associated Fusarium species. Phytopathology 96: 667–672.PubMedCrossRefGoogle Scholar
  335. Markovic VL, Stummer BE, Hill AS (2002) Immunodetection and characterization of antigens expressed by Uncinula necator. J Phytopathol 150: 667–673.CrossRefGoogle Scholar
  336. Martin B (1987) Rapid tentative identification of Rhizoctonia spp. associated with diseased turf grasses. Plant Dis 71: 47–49.CrossRefGoogle Scholar
  337. Martin FN (1991) Selection of DNA probes useful for isolate identification of two Pythium spp. Phytopathology 81: 742.CrossRefGoogle Scholar
  338. Martin MT, Cobos R (2007) Identification of fungi associated with grapevine decline in Castilla y León (Spain). Phytopathol Mediterr 46: 18–25.Google Scholar
  339. Martin FN, Tooley PW (2004) Identification of Phytophthora isolates to species level using restriction fragment length polymorphism analysis of a polymerase chain reaction-amplified region of mitochondrial DNA. Phytopathology 94: 983–991.PubMedCrossRefGoogle Scholar
  340. Martin FN, Tooley PW, Blomquist C (2004) Molecular detection of Phytophthora ramorum, the causal agent of sudden oak death in California and two additional species commonly recovered from diseased plant material. Phytopathology 94: 621–631.PubMedCrossRefGoogle Scholar
  341. Martin FN, Coffey MD, Zeller K, Hamelin RC, Tooley P, Garbelotto M, Hughes KJD, Kubisiak T, Bilodeau GJ, Levy L, Blomquist C, Berger PH (2009) Evaluation of molecular markers for Phytophthora ramorum detection and identification: Testing for specificity using standardized library of isolates. Phytopathology 99: 390–403.PubMedCrossRefGoogle Scholar
  342. Martinez-Culebras PV, Querol A, Suarez-Fernandez MB, Garcia-Lopez MD, Barrio E (2003) Phylogenetic relationships among Colletotrichum pathogens of strawberry and design PCR primers for their identification. J Phytopathol 151: 135–143.CrossRefGoogle Scholar
  343. Mathur S, Ukhede R (2002) Development of a dot-blot technique for rapid identification of Botrytis cinerea, the causal organism of gray mold in greenhouse tomatoes. J Horti Sci Biotechnol 77: 604–608.Google Scholar
  344. Matsuda Y, Sameshima T, Moriura N, Inoue K, Nonomura T, Kakutani K, Nishimura H, Kusakari S, Tamamatsu S, Toyoda H (2005) Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression of single conidium by polymerase chain reaction. Phytopathology 95: 1137–1143.PubMedCrossRefGoogle Scholar
  345. Matsumoto M, Matusyama N (1998) Trials of identification of Rhizoctonia solani AG 1-1A, the causal agent of rice sheath rot disease using specifically primed PCR analysis in diseased plant tissues. Bull Inst Trop Agric Kyushu Univ 21: 27–32.Google Scholar
  346. Matthew JS, Brooker JD (1991) The Appendix 1 and characterization of polyclonal and monoclonal antibodies to anastomosis group 8 of Rhizoctonia solani. Plant Pathol 40: 67–97.CrossRefGoogle Scholar
  347. Maude RB (1996) Seedborne Diseases and Their Control - Principles and Practice. CAB Internat, Wallingford, Oxon, UK.Google Scholar
  348. May KJ, Ristaino JB (2004) Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from Irish Potato Famine. Mycol Res 108: 471–479.PubMedCrossRefGoogle Scholar
  349. McDonald JG, Wong E, Kristjannson GT, White GP (1999) Direct amplification by PCR of DNA from ungerminated teliospores of Tilletia species. Canad J Plant Pathol 21: 78–80.CrossRefGoogle Scholar
  350. McDonald JG, Wong E, White GP (2000) Differentiation of Tilletia spp. by rep-PCR genomic printing. Plant Dis 84: 1121–1125.CrossRefGoogle Scholar
  351. McMaugh SJ, Lyon BR (2003) Real-time quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis. Biotechniques 34: 982–986.PubMedGoogle Scholar
  352. Mehl HL, Epstein L (2007) Identification of Fusarium solani f.sp. cucurbitae race 1 and race 2 with PCR and production of disease-free pumpkin seeds. Plant Dis 91: 1288–1292.CrossRefGoogle Scholar
  353. Mehl HL, Epstein L (2008) Sewage and community shower drains are environmental reservoirs of Fusarium solani species complex group 1, a human and plant pathogen. Environ Microbiol 10: 219–227.PubMedGoogle Scholar
  354. Meijerink G (1997) The International Seed Health Initiative. In: Hutchins D, Reeves JC (ed), Seed Health Testing, CAB International, Oxon, UK, pp. 87–94.Google Scholar
  355. Meng J, Wang Y (2010) Rapid detection of Phytophthora nicotianae in infected tobacco tissues and soil samples based on its Ypt1 gene. J Phytopathol 158: 1–7.CrossRefGoogle Scholar
  356. Mertely JC, Legard DE (2004) Detection, Appendix 1 and pathogenicity of Colletotrichum spp. from strawberry petioles. Plant Dis 88: 407–412.CrossRefGoogle Scholar
  357. Mew T, Bride J, Hibino H, Bonman J, Merca S (1988) Rice pathogens of quarantine importance. Proc Interat Workshop on Rice Seed Health, Internat Rice Research Inst Los Banos, Philippines, pp. 101–115.Google Scholar
  358. Meyer UM, Spotts RA (2000) Detection and quantification of Botrytis cinerea by ELISA in pear stems during cold storage. Plant Dis 84: 1099–1103.CrossRefGoogle Scholar
  359. Meyer L, Sanders GM, Jacobs R, Korsten L (2006) A one-day sensitive method to detect and distinguish between the citrus black spot pathogen Guignardia citricarpa and the endophyte Guignardia mangiferae. Plant Dis 90: 97–101.CrossRefGoogle Scholar
  360. Micales JA, Bonde MR (1995) Isozymes: Methods and applications. In: Singh RP and Singh US (ed) Molecular Methods in Plant Pathology, CRC/Lewis Publishers, Boca Ratan, USACrossRefGoogle Scholar
  361. Miller SA, Bhat RG, Scmitthenner (1994) Detection of Phytophthora capsici in peper and cucurbit crops in Ohio with two commercial immunoassay kits. Plant Dis 78: 1042–1046.CrossRefGoogle Scholar
  362. Mills PR, Sreenivasaprasad J, Brown AE (1992) Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR. FEMS Microbiol Lett 98: 137–143.CrossRefGoogle Scholar
  363. Minerdi D, Moretti M, Li Y, Gaggero L, Garibaldi A, Gullino ML (2008) Conventional PCR and real-time quantitative PCR detection of Phytophthora cryptogea on Gerbera jamesonii. Eur J Plant Pathol 122: 227–237.CrossRefGoogle Scholar
  364. Mirzaei S, Goltapeh EM, Shams-Bakhsh M, Safaie N (2008) Identification of Botrytis spp. on plants grown in Iran. J Phytopathol 156: 21–28.Google Scholar
  365. Montes-Borrego M, Muñoz Ledesma FJ, Jiménez-Díaz, Land BB (2009) A nested polymerase reaction protocol for detection and population biology studies of Peronospora arborescens, the downy mildew pathogen of opium poppy, using herbarium specimens and asymptomatic fresh plant tissues. Phytopathology 99: 73–81.PubMedCrossRefGoogle Scholar
  366. Morrica S, Ragazzi A, Kasuga T, Mitchelson KR (1998) Detection of Fusarium oxysporum f.sp.vasinfectum in cotton tissue by polymerase chain reaction. Plant Pathol 47: 486–494.CrossRefGoogle Scholar
  367. Mostert L, Groenewald JZ, Summerbell RC, Robert V, Sutton DA, Padhye AA, Crous PW (2005) Species of Phaeoacremonium associated with infection in humans and environmental reservoirs in infected woody plants. J Clin Microbiol 43: 1752–1767.PubMedCrossRefGoogle Scholar
  368. Moukhamedov R, Hu X, Nazar RN, Robb J (1994) Use of polymerase chain reaction amplified ribosomal intergenic sequences for the diagnosis of Verticillium tricorpus. Phytopathology 84: 256–259.CrossRefGoogle Scholar
  369. Mulé G, Suca A, Stea G, Moretti A (2004) A species-specific PCR based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur J Plant Pathol 110: 495–502.CrossRefGoogle Scholar
  370. Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Amer April 56.Google Scholar
  371. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via polymerase catalyzed chain reaction. Meth Enzymol 155: 335–350.PubMedCrossRefGoogle Scholar
  372. Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnostics – new solutions for old problems. Eur J Plant Pathol 116: 1–19.CrossRefGoogle Scholar
  373. Nakamura M, Suprapta DN, Iwai H (2008) Differentiation of pathogenic and nonpathogenic isolates of Geotrichum candidum sensu Suprapta on citrus fruit based on PCR-RFLP analysis of rDNA, ITS and PCR using specific primers designed in polygalacturonase genes. Mycoscience 49: 155–158.CrossRefGoogle Scholar
  374. Nannapaneni R, Gergerich RC, Lee FN (2000) Technology for rapid detection, identification and quantification of rice blast fungus Pyricularia grisea. Ark Agric Exp Sta Res Ser No 476: 480–485.Google Scholar
  375. Narayanasamy P (2001) Plant Pathogen Detection and Disease Diagnosis, Second edition, Marcel Dekker Inc., New York.Google Scholar
  376. Narayanasamy P (2005) Immunology in Plant Health and Its Impact on Food Safety, The Haworth Press, New York.Google Scholar
  377. Nanayakkara UN, Mathuresh Singh, Al Mugharabi KI, Peters RD (2009) Detection of Phytophthora erythroseptica in above-ground potato tissues, progeny tubers, stolons and crop debris using PCR techniques. Amer J Potato Res: DOI 10.1007/s12230-009-9077-xGoogle Scholar
  378. Nazar RN, Hu X, Schmidt J, Gulham D, Robb J (1991) Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of Verticillium wilt pathogens. Physiol Mol Plant Pathol 39: 1–11.CrossRefGoogle Scholar
  379. Newton AC (1991) Isozyme analysis in isolates of some facultative phytopathogenic fungi. J Phytopathol 131: 199.CrossRefGoogle Scholar
  380. Newton AC, Caten CE, Johnson R (1985) Variations for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathol 34: 235.CrossRefGoogle Scholar
  381. Nicholson P, Simpson DR, Wilson AH, Chandler E, Thomsett M (2004) Detection and differentiation of trichothecene- and enniatin-producing Fusarium species on small grain cereals. Eur J Plant Pathol 110: 503–514.CrossRefGoogle Scholar
  382. Nicolaisen M, Justesen AF, Thrane U, Skoube P, Holmström K (2005) An oligonucleotide microarray for the identification and differentiation of trichothencene producing and nonproducing Fusarium species occurring on cereal grains. J Microbiol Meth 62: 57–69.CrossRefGoogle Scholar
  383. Nicolaisen M, Suproniene S, Nielsen LK, Lazzaro I, Spliid NH, Justesen AF (2009) Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Meth 76: 234–240.CrossRefGoogle Scholar
  384. Niepold F, Schöber-Butin G (1995) Application of PCR technique to detect Phytophthora infestans in potato tubers and leaves. Microbiol Res 150: 379–385.PubMedCrossRefGoogle Scholar
  385. Niessen L, Vogel RF (1997) Specific identification of Fusarium graminearum by PCR with gaoA targeted primers. Syst Appl Microbiol 20: 111–123.CrossRefGoogle Scholar
  386. Northover J, Cerkauskas RF (1994) Detection and significance of symptomless latent infection of Monilinia fructicola in plums. Canad J Plant Pathol 16: 30–36.CrossRefGoogle Scholar
  387. O’Brien PA (2008) PCR primers for specific detection of Phytophthora cinnamomi. Austr Plant Pathol 37: 69–71.CrossRefGoogle Scholar
  388. O’Gorman DT, Sholberg PL, Stokes SC, Ginns J (2008) DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia 100: 227–235.PubMedCrossRefGoogle Scholar
  389. Ogoshi A, Oniki M, Araki T, Ui T (1983) Anastomosis groups of binucleate Rhizoctonia spp. in Japan and North America and their perfect stages. Trans Mycol Soc Jpn 24: 79–87.Google Scholar
  390. Okoli CAN, Carder JH, Barbara DJ (1994) Restriction fragment length polymorphisms (RFLPs) and the relationships of some host-adopted isolates of Verticillium dahliae. Plant Pathol 43: 33–40.CrossRefGoogle Scholar
  391. Okubara PA, Schroeder KL, Paulitz TC (2008) Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reation. Phytopathology 98: 837–847.PubMedCrossRefGoogle Scholar
  392. Old KM, Morgan GF, Bell JC (1984) Isozyme variability among isolates of Phytophthora cinnamomi from Australia and Papua New Guinea. Canad J Bot 62: 2016.CrossRefGoogle Scholar
  393. Oliver RP, Farman ML, Jones JDG, Harmon-Kosack KE (1993) Use of fungal transformants expressing ß-glucuronidase activity to detect infection and measure hyphal biomass in infected plant tissues. Molec Plant-Microbe Interact 6: 521–525.CrossRefGoogle Scholar
  394. Olsson CHB, Heiberg N (1997) Sensitivity of the ELISA test to detect Phytophthora fragariae var. rubi in raspberry roots. J Phytopathol 145: 285–288.CrossRefGoogle Scholar
  395. Omer MA, Johnson DA, Douhan LI, Hamm PB, Rowe RC (2008) Detection, quantification and vegetative compatibility of Verticillium dahliae in potato and mint production soils in the Columbia basin of Oregon and Washington. Plant Dis 92: 1127–1131.CrossRefGoogle Scholar
  396. Orihara S, Yamamoto T (1998) Detection of resting spores of Plasmodiophora brassicae from soil and plant tissues by enzyme immunoassay. Ann Phytopathol Soc Jpn 64: 569–573.CrossRefGoogle Scholar
  397. Otero AJ, Sarracent J, Hernández H, Sánchez M, Muirragui D, Villamar M, Moreta D, Jiménez MI, Pérez L, Maribona RH (2007) Monoclonal antibody-based TAS-ELISA for quantitative detection of Mycosphaerella fijiensis. J Phytopathol 155: 713–719.CrossRefGoogle Scholar
  398. Oudemans P, Coffey MD (1991a) Isozyme comparison within and among world wide sources of three morphologically distinct Phytophthora. Mycol Res 95: 19–30.CrossRefGoogle Scholar
  399. Oudemans P, Coffey MD (1991b) A revised systematics of twelve papillate Phytophthora species based on isozyme analysis. Mycol Res 95: 1025–1046.CrossRefGoogle Scholar
  400. Overton BE, Stewart EL, Qu X, Wenner NG, Christ BJ (2004) Qualitative real-time PCR-SYBR® Green detection of Petri disease fungi. Phytopathol Mediterr 43: 403–410.Google Scholar
  401. Paavanen-Huhtala S, Hyvönen J, Bulat SA, Yli-Mattilia T (1999) RAPD-PCR, isozyme, rDNA, RFLP and rDNA sequence analysis in identification of Finnish Fusarium oxysporum isolates. Mycol Res 103: 625–634.CrossRefGoogle Scholar
  402. Padliya ND, Garrett WM, Campbell KB, Tabb DL, Cooper B (2007) Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences. Proteomics 7: 3932–3942.PubMedCrossRefGoogle Scholar
  403. Padmanabhan R, Mohanraj D, Alexander KC, Jothi R (1995) Early and rapid detection of sugarcane smut by histological/immunological methods. In: Detection of Plant Pathogens and Their Management (ed) Verma JP, Varma A, Dinesh Kumar, Angkor Publishers, New Delhi, India, pp. 344–356.Google Scholar
  404. Pan SQ, Ye XS, Kuć J (1991) A technique for detection of chitinase ß-1,3-glucanase and protein patterns after a single separation using polyacrylamide gel electrophoresis or isoelectrofocusing. Phytopathology 81: 970–974.CrossRefGoogle Scholar
  405. Panabieres F, Marais A, Trentin F, Bonnet P, Ricci P (1989) Repetitive DNA polymorphism analysis as a tool for identifying Phytophthora species. Phytopathology 79: 1105–1109.CrossRefGoogle Scholar
  406. Pasquali M, Dematheis F, Gilardi G, Gullino ML, Garibaldi A (2005) Vegetative compatibility groups of Fusarium oxysporum f.sp. lactucae from lettuce. Plant Dis 89: 237–240.CrossRefGoogle Scholar
  407. Patiño B, Mirete S, Gondález-Jaen MT, Mulé G, Rodriguez T, Váquez C (2004) PCR detection assay of fumonisin producing Fusarium verticillioides strains. J Food Protect 67: 1278–1283.Google Scholar
  408. Patzak J (2003) PCR detection of hop fungal pathogens. Proc Internat Hop Growers Conv. Dobrna-Zalec, Slovania, pp. 12–16.Google Scholar
  409. Paulitz TC, Schroeder KL (2005) A new method for the quantification of Rhizoctonia solani and R. oryzae from soil. Plant Dis 89: 767–772.CrossRefGoogle Scholar
  410. Pekárová B, Krátka J, Slováćek J (2001) Utilization of immunochemical methods to detect Phytophthora fragariae in strawberry plants. Plant Protect Sci 37: 57–65.Google Scholar
  411. Peraza-Echeverría L, Rodríguez-García CM, Zapata-Salazar DM (2008) A rapid, effective method for profuse in vitro conidial production of Mycosphaerella fijiensis. Austr Plant Pathol 37: 460–463.CrossRefGoogle Scholar
  412. Peres NA, Harakava R, Adaskaveg JE, Timmer LW (2007) Comparison of molecular procedures for detection and identification of Guignardia citricarpa and G. mangiferae. Plant Dis 91: 525–531.CrossRefGoogle Scholar
  413. Pérez-Hernández O, Nam MH, Gleason ML, Kim HG (2008) Development of a nested polymerase chain reaction assay for detection of Colletotrichum acutatum on symptomless strawberry leaves. Plant Dis 92: 1665–1671.CrossRefGoogle Scholar
  414. Peters RD, Platt (Bud) HW, Hall R (1999) Use of allozyme markers to determine genotype to Phytophthora infestans in Canada. Canad J Plant Pathol 21: 144–153.CrossRefGoogle Scholar
  415. Peterson GL, Bonde MR, Phillips JG (2000) Size-selective sieving for detecting teliospores of Tilletia indica in wheat seed samples. Plant Dis 84: 999–1007.CrossRefGoogle Scholar
  416. Pethybridge SJ, Hay F, Jones S (2006) Seedborne infection of pyrethrum by Phoma ligulicola. Plant Dis 90: 891–897.CrossRefGoogle Scholar
  417. Pettitt TR, Wakeham AJ, Wainwright MF, White JG (2002) Comparison of serological, culture, and bait methods for detection of Pythium and Phytophthora zoospores in water. Plant Pathol 51: 720–727.CrossRefGoogle Scholar
  418. Pianzzola MJ, Moscatelli M, Vero S (2004) Characterization of Penicillium isolates associated with blue mold in apple in Uruguay. Plant Dis 88: 23–28.CrossRefGoogle Scholar
  419. Plantiño-Álvarez B, Rodríguez-Cámara MC, Rodríguez Fernandez T, González-Jaen MT, Vázquez Estévez C (1999) Immunodetection of an exo-polygalacturonase in tomato plants infected with Fusarium oxysporum f.sp. radicis-lycopersici. Bol Sandad Vegetal Plagas 25: 529–536.Google Scholar
  420. Plyler TR, Simone GW, Fernandez D, Kistler HB (1999) Rapid detection of the Fusarium oxysporum lineage containing the Canary Island date palm wilt pathogen. Phytopathology 89: 407–413.PubMedCrossRefGoogle Scholar
  421. Polashock JJ, Vaiciunas J, Oudemans PV (2005) Identification of a new Phytophthora species causing root and runner rot of cranberry in New Jersey. Phytopatholgy 95: 1237–1243.CrossRefGoogle Scholar
  422. Polevaya Y, Alkalai-Tuvia S, Copel A, Fallik E (2002) Early detection of gray mold development in tomato after harvest. Postharvest Biol Technol 25: 221–225.CrossRefGoogle Scholar
  423. Prasad MNN. Bhat SS, Charith Raj AP, Janardhana GR (2006) Molecular detection of Phomopsis azadirachtae, the causative agent of dieback disease of neem by polymerase chain reaction. Curr Sci 91: 158–159.Google Scholar
  424. Priestley RA, Dewey FM (1993) Development of a monoclonal antibody immunoassay for the eye spot pathogen Pseudocercosporella herpotrichoides. Plant Pathol 42: 403–412.CrossRefGoogle Scholar
  425. Prospero S, Black JA, Winton LM (2004) Isolation and characterization of microsatellite markers in Phytophthora ramorum, the causal agent of sudden oak death. Molec Ecol Notes 4: 672–624.CrossRefGoogle Scholar
  426. Pryor BM, Davis RM, Gilbertson RL (1994) Detection and eradication of Alternaria radicina in carrot seed. Plant Dis 78: 452–456.CrossRefGoogle Scholar
  427. Puhalla JE (1979) Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopatholgy 69: 1186–1189.CrossRefGoogle Scholar
  428. Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Canad J Bot 63: 1305–1308.Google Scholar
  429. Puhalla JE, Hummel M (1983) Vegetative incompatibility groups within Verticillium dahliae. Phytopathology 73: 1305–1308.CrossRefGoogle Scholar
  430. Qi YX, Zhang X, Pu JJ, Xie YX, Zhang HQ, Huang SL, Li SL, Zhang H (2009) Nested PCR assay for detection of Corynespora leaf fall disease caused by Corynespora cassiicola. Austr Plant Pathol 38: 141–148.CrossRefGoogle Scholar
  431. Qu X, Kavanagh JA, Egan D, Christ BJ (2006) Detection and quantification of Spongospora subterranea f.sp. subterranea by PCR in host tissue and naturally infested soils. Amer J Potato Res 83: 21–30.CrossRefGoogle Scholar
  432. Rachdawong S, Cramer CL, Grabau EA, Stromberg VK, Lacy GH, Strombeg EL (2002) Gauemannomycces graminis vars. avenae, graminis and tritici identified using PCR amplification of avinacinase-like genes. Plant Dis 86: 652–660.CrossRefGoogle Scholar
  433. Radisěk S, Jakše J, Javornik B (2004) Development of pathotype-specific SCAR markers for detection of Verticillium albo-atrum isolates from hop. Plant Dis 88: 1115–1122.CrossRefGoogle Scholar
  434. Rafin C, Nodet P, Tirilly R (1994) Immunoenzymatic staining procedure for Pythium species with filamentous noninflated sporangia in soilless cultures. Mycol Res 98: 535–541.CrossRefGoogle Scholar
  435. Rajeswari S, Palaniswami A, Rajappan K (1997) A chemodiagnostic method for the detection of symptomless latent infection of Colletotrichum musae in banana fruits. Plant Dis Res 12: 50–52.Google Scholar
  436. Rasmussen OF, Wulff BS (1991) Detection of Pseudomonas syringae pv. pisi using PCR. Proc 4th Internat Working Group, Kluwer Academic Publishers, Dordrecht, Nederlands, pp. 367–376.Google Scholar
  437. Rey MEC (1984) Immunofluorescence and protein A- gold technique in Lowicryl K4 M embedded tissue. J Microscope 136: 373–381.CrossRefGoogle Scholar
  438. Ridgway HJ, Steyaert JM, Pottinger BM, Carpenter M, Nicol D, Stewart A (2005) Development of an isolate-specific marker for tracking Phaeomoniella chlamydospora infection in grapevines. Mycologia 97: 1093–1101.PubMedCrossRefGoogle Scholar
  439. Rigotti S, Gindro K, Richter H, Viret O (2002) Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragaria x ananassa Duch.) using PCR. FEMS Microbiol Lett 209: 169–174.PubMedGoogle Scholar
  440. Rigotti S, Viret O, Gindro K (2006) Two new primers highly specific for the detection of Botrytis cinerea Pers.: Fr. Phytopathol Mediterr 45: 253–260.Google Scholar
  441. Ristaino JB, Johnson A, Blanco-Menses M, Liu B (2007) Identification of the tobacco blue mold pathogen Peronospora tabacina by polymerase chain reaction. Plant Dis 91: 685–691.CrossRefGoogle Scholar
  442. Rittenburg JH, Petersen FP, Grothaus GD, Miller SA (1988) Development of a rapid, field-usable immunoassay format for detection and quantification of Pythium, Rhizoctonia and Sclerotinia spp. in plant tissues. Phytopathology 78: 156.Google Scholar
  443. Roberts RG (2005) Alternaria yaliinficiens sp. nov. on Ya Li pear fruit: from interception to identification. Plant Dis 89: 134–145.CrossRefGoogle Scholar
  444. Roberts IM, Harrison BD (1979) Detection of potato leafroll and potato mop top viruses by immunosorbent electron microscopy. Ann Appl Biol 93: 289–297.CrossRefGoogle Scholar
  445. Robold AV, Hardham AR (1998) Production of species-specific antibodies that react with surface components on zoospores and cysts of Phytophthora nicotianae. Canad J Microbiol 44: 1161–1170.Google Scholar
  446. Roebroeck EJA, Groen NPA, Mes JJ (1990) Detection of latent Fusarium oxysporum infection in gladiolus corms. Acta Horti 266: 468–476.Google Scholar
  447. Rollo F, Amici A, Foesi F, di Silvestro L (1987) Construction and characterization of a cloned probe for the detection of Phoma tracheiphila in plant tissues. Appl Microbiol Biotechnol 26: 352.CrossRefGoogle Scholar
  448. Rollo F, Salvi R, Torchia P (1990) Highly sensitive and fast detection of Phoma tracheiphila by polymerase chain reaction. Appl Microbiol Biotechnol 32: 572–576.PubMedCrossRefGoogle Scholar
  449. Rolshausen PE, Trouillas FP, Gubler WD (2004) Identification of Eutypa lata by PCR-RFLP. Plant Dis 88: 925–929.CrossRefGoogle Scholar
  450. RueyShyang C, JwuGuh T, YuFen H, Chiou RYY (2002) Polymerase chain reaction-mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by multiplex polymerase chain reaction. J Food Protect 65: 840–844.Google Scholar
  451. Ruiz E, Ruffner HP (2002) Immunodetection of Botrytis-specific invertase in infected grapes. J. Phytopathol 150: 76–85.CrossRefGoogle Scholar
  452. Saiki RK, Walsh PS, Levenson CH, Ehrlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Nat Acad Sci USA 86: 6230–6234.PubMedCrossRefGoogle Scholar
  453. Salazar O, Julian MC, Rubio V (2000) Primers based on specific rDNA-ITS sequences for PCR detection of Rhizoctonia solani, R. solani AG2 subgroups and ecological types and binucleate Rhizoctonia. Mycol Res 104: 281–285.CrossRefGoogle Scholar
  454. Salinas J, Schots A (1994) Monoclonal antibodies-based immunofluorescence test for detection of conidia of Botrytis cinerea on cut flowers. Phytopathology 84: 351–356.CrossRefGoogle Scholar
  455. Sarlin T, Yli-Mattila T, Jestoi M, Rizzo A, Paavanen-Huhtala S, Harikara A (2006) Real-time PCR for quantification of toxigenic Fusarium species in barley and malt. Eur J Plant Pathol 114: 371–380.CrossRefGoogle Scholar
  456. Sauer KM, Hulbert SH, Tisserat NA (1993) Identification of Ophiosphaerella herpotricha by cloned DNA probes. Phytopathology 83: 97–102.CrossRefGoogle Scholar
  457. Savage SD, Sall MA (1981) Radioimmunosorbent assay for Botrytis cinerea. Phytopathology 71: 411–415.CrossRefGoogle Scholar
  458. Sayler RJ, Yang Y (2007) Detection and quantification of Rhizoctonia solani AG-1 IA, the rice sheath blight pathogen in rice using real-time PCR. Plant Dis 91: 1663–1668.CrossRefGoogle Scholar
  459. Says-Lesage V, Meliala C, Nicolas P, Roeckel-Drevet P, de Labrouhe TD, Archambault D, Billand F (2001) Molecular test to show the presence of mildew (Plasmopara halstedii) in sunflower seeds. OCL-Oléagineux, Corps Gras, Lipides 8: 258–260.Google Scholar
  460. Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol 41: 305–324.PubMedCrossRefGoogle Scholar
  461. Schena L, Nigro F, Ippolito A (2002) Identification and detection of Rosellinia necatrix by ­conventional and real-time Scorpion-PCR. Eur J Plant Pathol 108: 355–366.CrossRefGoogle Scholar
  462. Schena L, Hughes KJ, Cooke DEL (2006) Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol Plant Pathol 7: 365–379.PubMedCrossRefGoogle Scholar
  463. Schena L, Duncan JM, Cooke DEL (2008) Development and application of a PCR-based “molecular tool box” for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathol 57: 64–75.Google Scholar
  464. Schenk S (1998) Evaluation of a PCR amplification method for detection of systemic smut infection in sugarcane. SugarCane No.6: 2–5.Google Scholar
  465. Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Somerville SC, Maclean DJ (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicola. Plant Physiol 132: 999–1010.PubMedCrossRefGoogle Scholar
  466. Schlenzig A, Habermeyer J, Zinkernagel V (1999) Serological detection of latent infection with Phytophthora infestans in potato stems. J Plant Protect Plant Dis 106: 221–230.Google Scholar
  467. Schlenzig A, Cooke DEL, Chard JM (2005) Comparison of a baiting method and PCR for the detection of Phytophthora fragariae var. rubi in certified raspberry stocks. EPPO Bull 35: 87–91.CrossRefGoogle Scholar
  468. Schnerr H, Niessen L, Vogel R (2001) Real-time detection of the tri5 gene in Fusarium species by Light CyclerTM-PCR using SYBR® Green I for continuous fluorescence monitoring. Internat J Food Microbiol 71: 53–61.CrossRefGoogle Scholar
  469. Schroeder KL, Okubara PA, Tambong JT, Lévesque CA, Paulitz TC (2006) Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. 96: 637–647.Google Scholar
  470. Schulze S, Bahnweg G (1998) Critical review of identification techniques for Armillaria spp. and Heterobasidion annosum root and butt rot diseases. J Phytopathol 146: 61–72.CrossRefGoogle Scholar
  471. Schweigkofler W, O’Donnell K, Garbelotto M (2004) Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker from two California sites by using a real-time PCR approach combined with a simple spore trapping method. Appl Environ Microbiol 70: 3512–3520.PubMedCrossRefGoogle Scholar
  472. Scott Jr DL, Clark CW, Tooley PW, Carras MM, Maas JL (2002) The use of biomagnetic separation to recover DNA suitable for PCR from Claviceps species. Lett Appl Microbiol 31: 95–99.CrossRefGoogle Scholar
  473. Serdani M, Crous PW, Holz G, Petrini O (1998) Endophytic fungi associated with core rot of apples in South Africa with specific reference to Alternaria species. Sydowia 50: 257–271.Google Scholar
  474. Serdani M, Kang JC, Andersen B, Crous PW (2002) Characterization of Alternaria species-groups associated with core rot of apples in South Africa. Mycol Res 106: 561–569.CrossRefGoogle Scholar
  475. Sheridan GEC, Masters CI, Shallcross JA, Mackey BM (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64: 1313–1318.PubMedGoogle Scholar
  476. Shi L, Hu W, Su Z, Lu X, Tong W (2003) Microarrays: Technologies and applications. Appl Mycol Biotechnol Ser Vol 3, Elsevier Sci BV, Amsterdam, pp. 271–293.Google Scholar
  477. Silva-Mann R, Vieira MGGC, Machado JC, Filho JRB, Salgado KCC, Stevens MR (2005) AFLP markers differentiate isolates of Colletotrichum gossypii from C. gossypii var. cephalosporioides. Fitopatol Brasileira 30: 169–172.Google Scholar
  478. Silvar C, Díaz J, Merino F (2005a) Real-time polymerase chain reaction quantification of Phytophthora capsici in different pepper genotypes. Phytopathology 95: 1423–1429.PubMedCrossRefGoogle Scholar
  479. Silvar C, Duncan JM, Cooke DEL, Williams NA, Díaz J, Merino F. (2005b) Development of specific PCR primers for identification and detection of Phytophthora capsici. Eur J Plant Pathol 112 : 43–52.CrossRefGoogle Scholar
  480. Sinha OK, Singh Kishan, Mishra R (1982) Stain technique for detection of smut hyphae in nodal buds of sugarcane. Plant Dis 66: 932–933.CrossRefGoogle Scholar
  481. Sippell DN, Hall R (1995) Glucose phosphate isomerase polymorphism distinguish weakly virulent from highly virulent strains of Leptosphaeria maculans. Canad J Plant Pathol 17: 1–6.CrossRefGoogle Scholar
  482. Sissons JGP, Oldstone MBA (1980) Antibody-mediated destruction of virus-infected cells. Adv Immunol 29: 209–260.PubMedCrossRefGoogle Scholar
  483. Skottrup P, Frokiaer H, Hearty S, O’Kennedy R, Hejgaard J, Nicolaisen M, Justesen AF (2007a) Monoclonal antibodies for the detection of Puccinia striiformis urediniospores. Mycol Res 111: 332–338.PubMedCrossRefGoogle Scholar
  484. Skottrup P, Nicolaisen M, Justesen AF (2007b) Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J Microbiol Meth 68: 507–515.CrossRefGoogle Scholar
  485. Smith DR, Stanosz GR (2006) A species-specific PCR assay for detection of Diplodia pinea and D. scrobiculata in dead red and jack pines with collar rot symptoms. Plant Dis 90: 307–313.CrossRefGoogle Scholar
  486. Smith PK, Krohn RI, Hermanson GT (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85.PubMedCrossRefGoogle Scholar
  487. Sneh N, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. The Amer Phytopathol Soc St. Paul MN, USA.Google Scholar
  488. Söchting HP, Verreet JA (2004) Effects of different cultivation systems (soil management, nitrogen fertilization) on the epidemics of fungal diseases in oilseed rape (Brassica napus L. var. napus). J Plant Dis Protect 111: 1–29.Google Scholar
  489. Somai BM, Keinath AP, Dean RA (2002) Development of PCR-ELISA detection and differentiation of Didymella bryoniae from related Phoma species. Plant Dis 86: 710–716.CrossRefGoogle Scholar
  490. Stace-Smith R, Bowler DJ, McKenzie DJ, Ellis P ( 1993) Monoclonal antibodies differentiate the weekly virulent from highly virulent strain of Leptosphaeria maculans, the organism causing black leg of canola. Canad J Bot 15: 127–133.Google Scholar
  491. Stackebrandt E, Liesack W, Witt D (1992) Ribosomal RNA and rDNA sequence analyses. Gene 115: 225–260.CrossRefGoogle Scholar
  492. Strandberg JO (2002) A selective medium for the detection of Alternaria dauci and Alternaria radicina. Phytoparasitica 30: 269–284.CrossRefGoogle Scholar
  493. Sundaram S, Plascencia S, Banttari EE ( 1991) Enzyme-linked immunosorbent assay for detection of Verticillium spp. using antisera produced to V. dahliae from potato. Phytopathology 81: 1485–1489.CrossRefGoogle Scholar
  494. Svircev AM, Gardiner RB, McKeen WE, Day AW, Smith RJ (1986) Detection by protein A-gold of antigens of Botrytis cinerea in cytoplasm of infected Vicia faba. Phytopathology 76: 622–626.CrossRefGoogle Scholar
  495. Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD (2005) Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal micro-arrays. Nucleic Acids Res 33(8)- doi 10.1093/nar.gni069Google Scholar
  496. Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequencing of rDNA of the powdery mildew fungi. Mycoscience 42: 135–139.CrossRefGoogle Scholar
  497. Takamatsu S, Nakano M, Yokota H, Kunoh H (1998) Detection of Rhizoctonia solani AG-2-2-IV, the causal agent of large patch of Zoysia grass, using plasmid DNA as probe. Ann Phytopathol Soc Jpn 64: 451–457.CrossRefGoogle Scholar
  498. Takenaka S (1992) Use of immunological methods with antiribosome serums to detect snow mold fungi in wheat plants. Phytopathology 82: 896–901.CrossRefGoogle Scholar
  499. Takenaka S, Kawasaki S (1994) Characterization of alanine-rich hydroxyproline, containing cell wall proteins and their application for identifying Pythium species. Physiol Molec Plant Pathol 45: 249–261.CrossRefGoogle Scholar
  500. Tambong JT, de Cock AWAM, Tinker NA, Lévesque CA (2006) Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol 72: 2691–2706.PubMedCrossRefGoogle Scholar
  501. Tan MK, Ghalayini A, Sharma I, Yi J, Shivas R, Priest M, Wright D (2009) A one-tube fluorescent assay for the quarantine detection and identification of Tilletia indica and other grass bunts in wheat. Austr Plant Pathol 38: 101–109.CrossRefGoogle Scholar
  502. Tanaka A, Kitabayashi H, Tani T, Ogoshi A (1994) A pathogen causing patch so-called “elephant footprint” on zoysia grasses. Ann Phytopathol Soc Jpn 60: 344.Google Scholar
  503. Tempel A (1959) Serological investigations in Fusarium oxysporum. Meded No. 138 Lanbouwhogeschool, Wageningen 59: 1–60.Google Scholar
  504. Tenzer I, delgi Ivanissevic S, Morgante M, Gessler C (1999) Identification of microsatellite markers and their application to population genetics of Venturia inaequalis. Phytopathology 89: 748–753.PubMedCrossRefGoogle Scholar
  505. Thelwell N, Millington S, Solinas A, Booth J, Brown T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28: 3752–3761.PubMedCrossRefGoogle Scholar
  506. Themann K, Werres S, Diener HA, Lüttmann R (2002) Comparison of different methods to detect Phytophthora spp. in recylcling water from nurseries. J Plant Pathol 84: 41–50.Google Scholar
  507. Thornton CR, O’Neill TM, Hilton G, Gilligan CA (1999) Detection and recovery of Rhizoctonia solani in naturally infested glasshouse soils using a combined baiting double monoclonal antibody ELISA. Plant Pathol 48: 627–634.CrossRefGoogle Scholar
  508. Timmer LW, Menge JA, Zitko SE, Pond E, Miller SA, Johnson EL (1993) Comparison of ELISA techniques and standard Appendix 1 methods for Phytophthora detection in citrus orchards in Florida and California. Plant Dis 77: 791–796.CrossRefGoogle Scholar
  509. Tisserat NA, Hulbert SH, Nus A (1991) Identification of Leptosphaeria korrae by cloned DNA probes. Phytopathology 81: 917–921.CrossRefGoogle Scholar
  510. Tisserat NA, Hulbert SH, Sauer KM (1994) Selective amplification of rDNA internal transcribed spacer regions to detect Ophiosphaerella korrae and O. herpotricha. Phytopathology 84: 478–482.CrossRefGoogle Scholar
  511. Toit LJ, Derie ML, Hernandez-Perez P (2005) Verticillium wilt in spinach production. Plant Dis 89: 4–11.CrossRefGoogle Scholar
  512. Tomioka K, Sato T (2001) Restriction landmark genomic scanning (RLGs) in fungi. Mycoscience 42: 295–299.CrossRefGoogle Scholar
  513. Tomlinson JA, Boonham N, Hughes KJO, Griffin RL, Barker I (2005) On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Appl Environ Microbiol 71: 6702–6710.PubMedCrossRefGoogle Scholar
  514. Tooley PW, Martin FN, Carras MM, Frederick RD (2006) Real-time fluorescent polymerase chain reaction detection of Phytophthora ramorum and Phytophthora pseudosyringae using mitochondrial gene regions. Phytopathology 96: 336–345.CrossRefGoogle Scholar
  515. Tooley PW, Fry WE, Villareal-Gonzalez MJ (1985) Isozyme characterization of sexual and asexual Phytophthora infestans populations. J Hered 76: 431.Google Scholar
  516. Tooley PW, Carras MM, Lambert DH (1998) Application of a PCR-based test for detection of potato late blight and pink rot in tubers. Amer J Potato Res 75: 187–194.CrossRefGoogle Scholar
  517. Triki MA, Pirou S, El-Mahjoub B, Baudry A (2001) Leak syndrome of potato in Tunisia caused by Pythium aphanidermatum and P. ultimum. Potato Res 44: 221–231.CrossRefGoogle Scholar
  518. Trout CL, Ristaino JB, Madritch M, Wangsomboonde T (1997) Rapid detection of Phytophthora infestans in late blight-infected potato and tomato using PCR. Plant Dis 81: 1042–1048.CrossRefGoogle Scholar
  519. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluores upon hybridization. Nat Biotechnol 14: 303–308.PubMedCrossRefGoogle Scholar
  520. Úrbes-Torres JR, Leavitt GM, Guerrero JC, Guevara J, Gubler WD (2008) Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of Bot canker disease of grapevines in Mexico. Plant Dis 92: 519–529.CrossRefGoogle Scholar
  521. Urena-Padilla AR, Mac Kenzie SJ, Bowen BW, Legard DE (2002) Etiology and population genetics of Colletotrichum spp. causing crown and fruit rot of strawberry. Phytopathology 92: 1245–1252.PubMedCrossRefGoogle Scholar
  522. Vakalounakis DJ (1996) Root and stem rot of cucumber caused by Fusarium oxysporum f.sp. radicis-cucumerinum f.sp. nov. Plant Dis 80: 313–316.CrossRefGoogle Scholar
  523. Vakalounakis DJ, Fragkiadakis GA (1999) Genetic diversity of Fusarium oxysporum isolates from cucumber: differentiation by pathogenicity, vegetative compatibility and RAPD fingerprinting. Phytopathology 89: 161–168.PubMedCrossRefGoogle Scholar
  524. Vallad GE, Bhat RG, Koike ST, Ryder EJ, Subbarao KV (2005) Weed-borne reservoirs and seed transmission of Verticillium dahliae in lettuce. Plant Dis 89: 317–324.PubMedCrossRefGoogle Scholar
  525. Valsesia G, Gobbin D, Patocchi A, Vecchione A, Pertot I, Gessler C (2005) Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology 95: 672–678.PubMedCrossRefGoogle Scholar
  526. van de Graaf P, Lees AK, Cullen DW, Duncan JM (2003) Detection and quantification of Spongospora subterranea in soil, water and plant tissue samples using real-time PCR. Eur J Plant Pathol 109: 589–597.CrossRefGoogle Scholar
  527. van de Graaf P, Lees AK, Wale SJ, Duncan JM (2005) Effect of soil inoculum level and environmental facors on potato powdery scab caused by Spongospora subterranea. Plant Pathol 54: 22–28.CrossRefGoogle Scholar
  528. van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, Schoen CD (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on Open ArraysTM. BMC Genomics 8: 276 doi: 10.1186/1471-2164-8-276PubMedCrossRefGoogle Scholar
  529. van Gent-Pelzer MPE, Krijger M, Bonants PJM (2010) Improved real-time PCR assay for detection of the quarantine potato pathogen Synchytrium endobioticum in zonal centrifuge extracts from soil and in plants. Eur J Plant Pathol 126: 129–133.CrossRefGoogle Scholar
  530. Van Regenmortel MHV (1982) Serology and Immunochemistry of Plant Viruses, Academic Press, New York.Google Scholar
  531. Vandemark GJ, Ariss JJ (2007) Examining interaction between legumes and Aphanomyces euteichus with real-time PCR. Austr Plant Pathol 36: 102–108.CrossRefGoogle Scholar
  532. Vandemark GJ, Barker BM (2003) Quantifying Phytophthora medicaginis in susceptible and resistant alfalfa with real-time fluorescent assay. J Phytopathol 151: 577–583.CrossRefGoogle Scholar
  533. Velichetti RK, Lamison C, Brill LM, Sinclair JB (1993) Immunodetection of Phomopsis species in asymptomatic plants. Plant Dis 77: 70–73.CrossRefGoogle Scholar
  534. Verreet JA, Klink H, Hoffmann GM (2000) Regional monitoring for disease prediction and optimization of plant protection measures: the IPM wheat model. Plant Dis 84: 816–826.CrossRefGoogle Scholar
  535. Viswanathan R, Samiyappan R, Padmanaban P (1998) Specific detection of Colletotrichum falcatum in sugarcane by serological techniques. SugarCane No.6: 18–3.Google Scholar
  536. Vöhringer G, Sander G (2001) Comparison of antibodies in chicken egg yolk (IgY) and rabbit (IgG) for quantitative strain detection of Colletotrichum falcatum and Fusarium subglutinans. J Plant Dis Protect 108: 39–48.Google Scholar
  537. Waalwijk C, Heide R, van der deVries I, Lee T, van der Schoen C, Coainville GC, Häuser-Hahn I, Kastelein P, Köhl J, Demarquet T, Kema GH (2004) Quantitative detection of Fusarium species in wheat using TaqMan. Eur J Plant Pathol 110: 481–494.CrossRefGoogle Scholar
  538. Wahlström K, Karlsson JO, Holdenrieder O, Stenlid J (1991) Pectinolytic activity and isoenzymes in European Armillaria species. Canad J Bot 69: 2732–2739.CrossRefGoogle Scholar
  539. Walcott RR, Gitaitis RD, Langston DB (2004) Detection of Botrytis aclada in onion seed using magnetic capture hybridization and the polymerase chain reaction. Seed Sci Technol 32: 425–438.Google Scholar
  540. Wang PH, White JG (1996) Development of a species-specific primer for Pythium violae. Proc BCPC Symp 65: 205–210.Google Scholar
  541. Wang YC, Yu RC (1998) Detection of toxigenic Aspergillus spp. in rice and corn by ELISA. J Chinese Agric Chem Soc 36: 512–520.Google Scholar
  542. Wang CG, Blanchette RA, Jackson WA, Palmer MA (1985) Differences in conidial morphology among isolates of Sphaeropsis sapinea. Plant Disease 69: 838–841.CrossRefGoogle Scholar
  543. Wang PH, Lo HS, Yeh Y (2001) Identification of F. oxysporum cucumerinum and F. oxysporum luffae by RAPD-generated DNA probes. Lett Appl Microbiol 33: 397–401.PubMedCrossRefGoogle Scholar
  544. Wang PH, Chung CY, Lin YS, Yeh Y (2003a) Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum in infected ginger rhizomes. Lett Appl Microbiol 36: 116–120.PubMedCrossRefGoogle Scholar
  545. Wang PH, Wang YT, White JG (2003b) Species-specific PCR primers for Pythium developed from ribosomal ITS1 region. Lett Appl Microbiol 37: 127–132.PubMedCrossRefGoogle Scholar
  546. Wang Y, Zhang W, Wang Y, Zheng X (2006) Rapid and sensitive detection of Phytophthora sojae in soil and infected soybeans by species-specific polymerase chain reaction assays. Phytopathology 96: 1315–1321.PubMedCrossRefGoogle Scholar
  547. Wang X, Zheng W, Buchenauer H, Zhao J, Han Q, Huang L, Kang Z (2008) The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves. Eur J Plant Pathol 120: 241–247.CrossRefGoogle Scholar
  548. Wangsomboondee T, Ristaino JB (2002) Optimization of sample size and rDNA extraction methods to improve PCR detection of different propagules of Phytophthora infestans. Plant Dis 86: 247–253.CrossRefGoogle Scholar
  549. Ward E, Gray RM (1992) Generation of a ribosomal DNA probed by PCR and its use in identification of fungi within the Gauemannomyces-Phialophora complex. Plant Pathol 41: 730–736.CrossRefGoogle Scholar
  550. Ward CM, Wilkinson AP, Bramham S, Lee HA, Chan WHS, Butcher GW, Hutchings A, Morgan MRA (1990) Production and characterization of polyclonal and monoclonal antibodies against aflatoxin B1 oxime-BSA in an enzyme-linked immunosorbent assay. Mycotoxin Res 6: 73–83.CrossRefGoogle Scholar
  551. Ward LI, Beales PA, Barnes AV, Lane CR (2004) A real-time PCR assay based method for routine diagnosis of Spongospora subterranea on potato tubers. J Phytpathol 152: 633–638.CrossRefGoogle Scholar
  552. Watson WT, Kenerley CM, Appel DM (2000) Visual and infra-red assessment of root colonization of apple trees by Phymatotrichopsis omnivora. Plant Dis 84: 539–543.CrossRefGoogle Scholar
  553. Webster J, Weber R (2007) Introduction to Fungi, Third edition, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  554. Weeds PL, Beever RE, Long PL (1998) New genetic markers for Botrytis cinerea (Botryotinia fuckeliana). Mycol Res 102: 791–800.CrossRefGoogle Scholar
  555. Weier HU, Gray JW (1988) A programmable system to perform polymerase chain reaction. DNA 7: 441–447.PubMedCrossRefGoogle Scholar
  556. Whisson DL, Herdina A, Francis L (1995) Detection of Rhizoctonia solani AG-8 in soil using a specific DNA probe. Mycol Res 99: 1299–1302.CrossRefGoogle Scholar
  557. Whiteman SA, Jaspers MV, Stewart A, Ridgway JJ (2002) Detection of Phaeomoniella chlamydospora in soil using species-specific PCR. New Zealand Plant Prtoect 55: 139–145.Google Scholar
  558. Whiteman SA, Jaspars MV, Stewart A, Ridgway JJ (2004): Phaeomoniella chlamydospora detection in the grapevine propagation process by species-specific PCR. Phytopathol Mediterr 43: 156.Google Scholar
  559. Wiechel TJ, Salib S, Edwards J (2005) Real-time PCR detection and quantification of Phaeomoniella chlamydospora during grapevine propagation in the nursery. 15th Austr Plant Pathol Bienn Conf, Geelong, Australia.Google Scholar
  560. Wijekoon CP, Goodwin PH, Hsiang T (2008) Quantifying fungal infection of plant leaves by digital image analysis using Scion Image software. J Microbiol Meth 74: 94–101.CrossRefGoogle Scholar
  561. Willits DA, Sherwood JE (1999) Polymerase chain reaction detection of Ustilago hordei in leaves of susceptible and resistant barley varieties. Phytopathology 89: 212–217.PubMedCrossRefGoogle Scholar
  562. Wiwart M, Korona A (1998) Application of a color image analysis of kernels in evaluation of the infection of triticale grown in different cultivation system. Plant Breed Sci 42: 69–79.Google Scholar
  563. Woong NK, Hae KC, Haiseong H (1996) Studies on the pear abnormal leaf spot disease. 5. Selection of indicator plants. Kor J Plant Pathol 12: 214–216.Google Scholar
  564. Wu WS, Chen TW (1999) Development of a new selective medium for detecting Alternaria brassicola in cruciferous seeds. Seed Sci Technol 27: 397–409.Google Scholar
  565. Xiao CL, Rogers JD (2004) A postharvest fruit rot in d’Anjou pears caused by Sphaeropsis pyriputrescens sp. nov. Plant Dis 88: 114–118.CrossRefGoogle Scholar
  566. Xiaojie W, Chunlei T, Jimlong C, Buchenauer H, Jie Z, Qingmei H, Lili H, Zhensheng K (2009) Detection of Puccinia striiformis in latently infected wheat leaves by nested polymerase chain reaction. J Phytopathol DOI 10.1111/j.1439-0434.2008.01521.xGoogle Scholar
  567. Xu ML, Melchinger AE, Lübberstedt T (1999) Species-specific detection of the maize pathogens Sporisorium reiliana and Ustilago maydis by dot-blot hybridization and PCR-based assays. Plant Dis 83: 390–395.CrossRefGoogle Scholar
  568. Xu X-M, Parry DW, Nicholson P, Thomsett MA, Simpson D, Edwards SG, Cooke BM, Doohan FM, Monaghan S, Moretti A, Tocco G, Mule G, Hornok L, Béki E, Tatnell J, Ritieni A (2008) Within-field variability of Fusarium head blight pathogens and their associated mycotoxins. Eur J Plant Pathol 120: 21–34.CrossRefGoogle Scholar
  569. Xue P, Goodwing PH, Annis SL (1992) Pathotype identification of Leptosphaeria maculans with PCR and oligonucleotide primers from ribosomal internal transcribed spacer sequences. 141: 179–188.Google Scholar
  570. Yan L, Zhang C, Ding L, Ma Z (2008) Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. J Appl Microbiol 104: 1417–1424.PubMedCrossRefGoogle Scholar
  571. Yao CL, Frederiksen RA, Magill CW (1990) Seed transmission of sorghum downy mildew: detection by DNA hybridization. Seed Sci Technol 18: 201–207.Google Scholar
  572. Yao CL, Magill CW, Frederiksen RA (1991) Use of an A-T rich DNA clone for identification and detection of Peronospora sorghi. Appl Environ Microbiol 57: 2027.PubMedGoogle Scholar
  573. Yates IE, Hiett KL, Kapczynski DR, Smart W, Glenn AE, Hinton DM, Bacon CW, Meinersmann R, Liu S, Jaworski AJ (1999) GUS transformation of the maize endophyte Fusarium moniliforme. Mycol Res 103: 129–136.CrossRefGoogle Scholar
  574. Yin Y, Ding L, Liu X, Yang J, Ma Z (2009) Detection of Sclerotinia sclerotiorum in planta by a real-time PCR assay. J Phytopathol 157; 465–469.CrossRefGoogle Scholar
  575. Yoshida S, Tsukiboshi T, Shinohara H, Koitabashi M, Tsushima S (2007) Occurrence and development of Colletotrichum acutatum on symptomless blueberry bushes. Plant Pathology 56: 871–877.CrossRefGoogle Scholar
  576. Yu FH, Chiu FS (1998) Analysis of fumonisins and Alternaria alternata toxin by liquid chromatography-enzyme-linked immunosorbent assay. J AOAC Internat 81: 749–756.Google Scholar
  577. Yuan Q, Nian S, Yin Y, Li M, Cai J, Wang Z (2009) Development of a PCR-based diagnostic tool specific to wheat dwarf bunt caused by Tilletia controversa. Eur J Plant Pathol 124: 585–594.CrossRefGoogle Scholar
  578. Yuen GY, Craig ML, Avila F (1993) Detection of Pythium ultimum with a species-specific monoclonal antibody. Plant Dis 77: 692–698.CrossRefGoogle Scholar
  579. Yuen GY, Xia JQ, Sutula CL (1998) A sensitive ELISA for Pythium ultimum using polyclonal and species-specific monoclonal antibodies. Plant Dis 82: 1029–1032.CrossRefGoogle Scholar
  580. Zelinger E, Hawves CR, Gurr SJ, Dewey FM (2004) An immunochemical and ultra-structural study of the extracellular matrix produced by germinating spores of Stagonospora nodorum on natural and artificial surfaces. Physiol Mol Plant Pathol 65: 123–135.CrossRefGoogle Scholar
  581. Zhang AW, Hartman GL, Riccinoi L, Chen WD, Ma RZ, Pedersen WL (1997) Using PCR to distinguish Diaporthe phaseolorum and Phomopsis longicolla from other soybean fungal pathogens and to detect them in soybean tissues. Plant Dis 81: 1143–1149.CrossRefGoogle Scholar
  582. Zhang AW, Hartman GL, Curio-Penny B, Pedersen WL, Becker KB (1999) Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology 89: 796–804.PubMedCrossRefGoogle Scholar
  583. Zhang Z, Zhang J, Wang Y, Zheng X (2005) Molecular detection of Fusarium oxysporum f.sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiol Lett 249: 39–47.PubMedCrossRefGoogle Scholar
  584. Zhang N, Geiser DM, Smart CD (2007) Macroarray detection of solanaceous plant pathogens in the Fusarium solani species complex. Plant Dis 91: 1612–1620.CrossRefGoogle Scholar
  585. Zhao J, Wang XJ, Chen CQ, Huang LL, Kang ZS (2007) A PCR-based assay for detection of Puccinia striiformis f.sp. tritici in wheat. Plant Dis 91: 1669–1674.CrossRefGoogle Scholar
  586. Zheng FC, Ward E (1998) Variation within and between Phytophthora species for rubber and citrus trees in China by polymerase chain reaction using RAPDs. J Phytopathol 146: 103–109.CrossRefGoogle Scholar
  587. Zink AR, Reischl U, Wolf H, Nerlich AG (2002) Molecular analysis of ancient microbial infections. FEMS Microbiol Lett 213: 141–147.PubMedCrossRefGoogle Scholar
  588. Zur G, Shimoni E, Hallerman E, Kashi Y (2002) Detection of Alternaria fungal contamination in cereal grains by a polymerase chain reaction-based assay. J Food Protect 65: 1433–1440.Google Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.CoimbatoreIndia

Personalised recommendations