Skip to main content

Stochastic Evolution Model of Neuronal Oscillator Population Under the Condition of the Variable Higher Order Coupling

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (II)

Abstract

In the premise of analysis on the dynamic characteristics of the transmission mechanism among the synapses, this paper modified the coupling term in the P.A. Tass’s stochastic evolution model of neuronal oscillator population, introducing the variable higher order coupling term. Then, we performed the numerical simulation on the modified model. The simulation results show that without the external stimulation, the variable coupling mechanism can induce the transition between different clustering states of the neuronal oscillator population. And a full desynchronization state can exist in the middle of the transition between two different synchronization states induced by the variable coupling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray C.M., Singer, W.: Stimulus-specific neuronal oscillation in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U. S. A. 86 (1989) 1698–1702.

    Article  CAS  PubMed  Google Scholar 

  2. Eckhorn, R., Bauer, R., Jordan, W., et al.: Coherent oscillations: a mechanism of feature linking in the visual cortex. Biol. Cybern. 60 (1988) 121–130.

    Article  CAS  PubMed  Google Scholar 

  3. Vaadia, E., Haalman, I., et al.: Dynamics of neuronal interactions in the monkey cortex in relation to behavioral events. Nature. 373 (1995) 515–518.

    Article  CAS  PubMed  Google Scholar 

  4. Abeles, M., Prut, Y.: Temporal structure of cortical activity. Proceedings of the International Conference, Bochum, Germany, July 16–19 (1996).

    Google Scholar 

  5. Winfree, A.T.: The Geometry of Biological Time. (Biomathematics. vol. 8). New York, NY, Heidelberg, Berlin: Springer-Verlag (1980).

    Google Scholar 

  6. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. New York, NY: Springer (1984).

    Google Scholar 

  7. Tass, P.A.: Phase Resetting in Medicine and Biology. Berlin: Spring-Verlag (1999).

    Google Scholar 

  8. Xiaodan, Z., Runbin, W., et al.: Stochastic evolution model of neuronal oscillator population under the condition of the higher order Coupling. The 5th International Conference on Natural Computation (ICNC’09), Tianjin (2009).

    Google Scholar 

Download references

Acknowledgments

Project (10872068, 10672057) supported by National Natural Science Foundation of China (NSFC)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zhang, X., Wang, R., Zhang, Z., Jiao, X., Cao, J. (2011). Stochastic Evolution Model of Neuronal Oscillator Population Under the Condition of the Variable Higher Order Coupling. In: Wang, R., Gu, F. (eds) Advances in Cognitive Neurodynamics (II). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9695-1_35

Download citation

Publish with us

Policies and ethics