Gamma-Frequency Synaptic Input Enhances Gain Modulation of the Layer V Pyramidal Neuron Model

  • Xiumin Li
  • Kenji Morita
  • Hugh P.C. Robinson
  • Michael Small
Conference paper


Cortical gamma frequency (30–80 Hz) oscillations have been suggested to underlie many aspects of cognitive functions. In this paper we compare the \(f-I\) curves modulated by gamma-frequency-modulated stimulus and Poisson synaptic input at distal dendrites of a layer V pyramidal neuron model. The results show that gamma-frequency distal input amplifies the sensitivity of neural response to basal input, and enhances gain modulation of the neuron.


Gain Modulation Basal Dendrite Distal Dendrite Gamma Frequency Regular Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., McCormick, D.: Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47(3) (2005) 423–435.CrossRefPubMedGoogle Scholar
  2. 2.
    Morita, K., Kalra, R., Aihara, K., Robinson, H.: Recurrent synaptic input and the timing of gamma-frequency-modulated firing of pyramidal cells during neocortical “UP” states. J. Neurosci. 28(8) (2008) 1871.CrossRefPubMedGoogle Scholar
  3. 3.
    Cardin, J., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L., Moore, C.: Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature (2009).Google Scholar
  4. 4.
    Sohal, V., Zhang, F., Yizhar, O., Deisseroth, K.: Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature (2009).Google Scholar
  5. 5.
    Fries, P.: Neuronal gamma-band synchronization as a fundamental process in cortical computation. Ann. Rev. Neurosci. 32(1) (2009).Google Scholar
  6. 6.
    Shu, Y., Hasenstaub, A., Badoual, M., Bal, T., McCormick, D.: Barrages of synap-tic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23(32) (2003) 10388–10401.PubMedGoogle Scholar
  7. 7.
    Brozović, M., Abbott, L., Andersen, R.: Mechanism of gain modulation at single neuron and network levels. J. Comput. Neurosci. 25(1) (2008) 158–168.CrossRefPubMedGoogle Scholar
  8. 8.
    Tiesinga, P., Fellous, J., Salinas, E., José, J., Sejnowski, T.: Inhibitory synchrony as a mechanism for attentional gain modulation. J. Physiol. (Paris). 98(4–6) (2004) 296–314.CrossRefGoogle Scholar
  9. 9.
    Hines, M., Carnevale, N.: The NEURON simulation environment. Neural. Comput. 9(6) (1997) 1179–1209.CrossRefPubMedGoogle Scholar
  10. 10.
    Vargas-Caballero, M., Robinson, H.: Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. J. Neurosci. 24(27) (2004) 6171–6180.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xiumin Li
    • 1
  • Kenji Morita
    • 2
  • Hugh P.C. Robinson
    • 3
  • Michael Small
    • 1
  1. 1.Department of Electronic and Information EngineeringHong Kong Polytechnic UniversityKowloonHong Kong
  2. 2.RIKEN Brain Science InstituteWakoJapan
  3. 3.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK

Personalised recommendations