Chaotic Dynamics, Episodic Memory, and Self-identity

  • Ichiro TsudaEmail author
Conference paper


The hippocampus has been considered responsible for the formation of episodic memory. It has also been pointed out that the hippocampus plays an important role in imagination, which is related to future events. The fact that atrophy of the hippocampus could lead to Alzheimer’s disease implies that the network structure of the hippocampus may provide fields for the creation of internal time corresponding to the past, present, and future. We present a hypothesis that the hippocampus plays a role in the formation of self-identity via interactions with the lateral prefrontal cortex.


Chaotic dynamics Episodic memory Self-identity Internal time 



The author would like to express his special thanks to Minoru Tsukada, Yasunori Fukushima, Shigeru Kuroda, and Yutaka Yamaguti for their invaluable discussions on both theoretical and experimental studies of the hippocampal function. This work was partially supported by Grant-in-Aid for Scientific Research – on Priority Areas “Integrative Brain Research” (18019002), partially supported by Grant-in-Aid for Scientific Research on Priority Areas “Understanding of Mobiligence” (18047001), partially supported by Grant-in-Aid for Scientific Research (B) (18340021), and partially supported by Grant-in-Aid for Exploratory Research (17650056) – all from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Tulving, E.: Episodic and semantic memory. In Tulving, E., Donaldson, W., eds.: Organization of Memory. New York: Academic Press (1972) 381–403.Google Scholar
  2. 2.
    Scoville, W.B., Milner, B.: Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatr. 20 (1957) 11–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Zola-Morgan, S., Squire, L.R., Amaral, D.G.: Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of hippocampus. J. Neurosci. 6 (1986) 2950–2967.PubMedGoogle Scholar
  4. 4.
    O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res. 34 (1971) 171–175.CrossRefPubMedGoogle Scholar
  5. 5.
    Dalla Barba, G., Nedjam, Z., Dubois, B.: Confabulation, executive functions, and source memory in Alzheimer’s disease. Cogn. Neuropsychol. 16 (1999) 385–398.CrossRefGoogle Scholar
  6. 6.
    Hassabis, D., Kumaran, D., Vann, S.D., Maguire, E.A.: Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl. Acad. Sci. USA. 104 (2007) 1726–1731.CrossRefPubMedGoogle Scholar
  7. 7.
    Buzsaki, G., Functions for interneuronal nets in the hippocampus. Can. J. Physiol. Pharmacol. 75 (1997) 508–515.CrossRefPubMedGoogle Scholar
  8. 8.
    Marr, D., Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B. 262 (1971) 23–81.CrossRefGoogle Scholar
  9. 9.
    Treves, A., Rolls, E.T.: Computational analysis of the hippocampus in memory. Hippocampus. 4 (1994) 374–391.CrossRefPubMedGoogle Scholar
  10. 10.
    McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102 (1995) 419–457.CrossRefPubMedGoogle Scholar
  11. 11.
    Tsuda, I.: Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24 (2001) 793–847.CrossRefPubMedGoogle Scholar
  12. 12.
    Tsuda, I., Kuroda, S.: Cantor coding in the hippocampus. Jpn. J. Ind. Appl. Math. 18 (2001) 249–258.CrossRefGoogle Scholar
  13. 13.
    Tsuda, I.: Dynamic link of memories — chaotic memory map in nonequilibrium neural networks. Neural Netw. 5 (1992) 313–326.CrossRefGoogle Scholar
  14. 14.
    Nara, S., Davis, P.: Chaotic wandering and search in a cycle-memory neural network. Prog. Theor. Phys. 88 (1992) 845–855.CrossRefGoogle Scholar
  15. 15.
    Adachi, M., Aihara, K.: Associative dynamics in a chaotic neural network. Neural Netw. 10 (1997) 83–98.CrossRefPubMedGoogle Scholar
  16. 16.
    Haken, H.: Beyond attractor neural networks for pattern recognition. Nonlinear Phenomena Complex Syst. 9 (2006) 163–172.Google Scholar
  17. 17.
    Ikeda, K., Otsuka, K., Matsumoto, K.: Maxwell-Bloch turbulence. Prog. Theor. Phys. 99(Suppl.) (1989) 295–324.Google Scholar
  18. 18.
    Kaneko, K.: Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Physica D. 41 (1990) 137–172.CrossRefGoogle Scholar
  19. 19.
    Tsuda, I.: Chaotic itinerancy as a dynamical basis of hermeneutics of brain and mind. World Futures. 32 (1991) 167–185.CrossRefGoogle Scholar
  20. 20.
    Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99 (1985) 177–195.CrossRefGoogle Scholar
  21. 21.
    Tsuda, I.: Hypotheses on the functional roles of chaotic transitory dynamics. Chaos. 19 (2009) 015113-1–015113-10.CrossRefGoogle Scholar
  22. 22.
    Sasaki, T., Matsuki, N., Ikegaya, Y.: Metastability of active CA3 networks. J. Neurosci. 17 (2007) 517–528.CrossRefGoogle Scholar
  23. 23.
    Pinsky, P.F., Rinzel, J.: Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons. J. Comput. Neurosci. 1 (1994) 39–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Yamaguti, Y., Kuroda, S., Tsuda, I.: A mathematical model for Cantor coding in the hippocampus. in preparation (2009).Google Scholar
  25. 25.
    Kuroda, S., Fukushima, Y., Yamaguti, Y., Tsukada, M., Tsuda, I. Iterated function systems in the hippocampal CA1. To be published in Cogn. Neurodyn. (2009).Google Scholar
  26. 26.
    Fukushima, Y., Tsukada, M., Tsuda, I., Yamaguti, Y., Kuroda, S.: Cantor-like coding in hippocampal CA1 pyramidal neurons. Cogn. Neurodyn. 1 (2007) 305–316.CrossRefPubMedGoogle Scholar
  27. 27.
    Peppel, E.: Grenzen des Bewußtseins: Über Wirklichkeit und Welterfahrung (Stuttgart: Deutsche Verlags-Anstalt GmbH, 1985); Ishiki no Naka no Jikan (Translated into Japanese by T. Tayama and K. Ogata, Tokyo: Iwanami-Publ. 1995: Japanese translation is from original German version); Mindworks: Time and Conscious Experience (Translated into English by T. Artin, H. Brace, New York: Jovanovich Publishers, 1988).Google Scholar
  28. 28.
    Freeman, W.J., How Brains Make Up Their Minds (London: 1999).Google Scholar
  29. 29.
    Grim, P. Self-reference and chaos in fuzzy logic. IEEE Trans. Fuzzy Syst. 1 (1993) 237–253.CrossRefGoogle Scholar
  30. 30.
    Mar, G., Grim, P.: Pattern and chaos: new images in the semantics of paradox. Nous. 25 (1991) 659–693.CrossRefGoogle Scholar
  31. 31.
    Tsuda, I., Tadaki, K.: A logic-based dynamical theory for a genesis of biological threshold. BioSystems. 42 (1997) 45–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Pan, X., Sawa, K., Tsuda, I., Tsukada, M., Sakagami, M.: Reward prediction based on stimulus categorization in primate lateral prefrontal cortex. Nat. Neurosci. 11 (2008) 703–712.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Research Institute for Electronic Science, Hokkaido UniversitySapporoJapan

Personalised recommendations