Skip to main content

Beyond Sensory Coding: The Cognitive Context of Olfactory Neurodynamics

  • 594 Accesses

Abstract

The local field potential from the mammalian olfactory system displays several oscillatory modes. Gamma oscillations (40–100 Hz) are associated with odor stimulation in the olfactory bulb (OB) and are enhanced with odor discrimination learning in a 2-alternative choice task when odors are very similar. Beta oscillations (15–30 Hz) are associated with learning in a go/no-go task. These two oscillatory modes represent different cognitive states, and different networks appear to support them. Gamma oscillations are produced locally within the OB, while beta oscillations rely on bidirectional connections with the rest of the olfactory and limbic systems. These results help elucidate the context-dependent sensory representation seen at every neurophysiological level in the OB.

Keywords

  • Gamma oscillations
  • Beta oscillations
  • Operant behavior
  • Olfaction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9695-1_12
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9695-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Kay, L.M., Laurent, G.: Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat. Neurosci. 2(11) (1999) 1003–1009.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Rinberg, D., Koulakov, A., Gelperin, A.: Sparse odor coding in awake behaving mice. J. Neurosci. 26(34) (2006) 8857–8865.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Doucette, W., Restrepo, D.: Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol. 6(10) (2008) e258.

    CrossRef  PubMed  Google Scholar 

  4. Freeman, W.J., Schneider, W.: Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology. 19(1) (1982) 44–56.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Kay, L.M., Beshel, J., Brea, J., Martin, C., Rojas-Líbano, D., Kopell, N.: Olfactory oscillations: the what, how and what for. Trends Neurosci. 32(4) (2009) 207–214.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Rojas-Líbano, D., Kay, L.M.: Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn. Neurodyn. 2(3) (2008) 179–194.

    CrossRef  PubMed  Google Scholar 

  7. Herz, R.S.: The effect of verbal context on olfactory perception. J. Exp. Psychol. Gen. 132(4) (2003) 595–606.

    CrossRef  PubMed  Google Scholar 

  8. Barrie, J.M., Freeman, W.J., Lenhart, M.D.: Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. J. Neurophysiol. 76(1) (1996) 520–539.

    CAS  PubMed  Google Scholar 

  9. Rinberg, D., Koulakov, A., Gelperin, A.: Speed-accuracy tradeoff in olfaction. Neuron. 51(3) (2006) 351–358.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Frederick, D.E., Barlas, L., Ievins, A., Kay, L.M.: A critical test of the overlap hypothesis for odor mixture perception. Behav. Neurosci. 123(2) (2009) 430–437.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Martin, C., Beshel, J., Kay, L.M.: An olfacto-hippocampal network is dynamically involved in odor-discrimination learning. J. Neurophysiol. 98(4) (2007) 2196–2205.

    CrossRef  PubMed  Google Scholar 

  12. Beshel, J., Kopell, N., Kay, L.M.: Olfactory bulb gamma oscillations are enhanced with task demands. J. Neurosci. 27(31) (2007) 8358–8365.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Martin, C., Gervais, R., Hugues, E., Messaoudi, B., Ravel, N.: Learning modulation of odor-induced oscillatory responses in the rat olfactory bulb: a correlate of odor recognition?. J. Neurosci. 24(2) (2004) 389–397.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Martin, C., Gervais, R., Messaoudi, B., Ravel, N.: Learning-induced oscillatory activities correlated to odour recognition: a network activity. Eur. J. Neurosci. 23 (2006) 1801–1810.

    CrossRef  PubMed  Google Scholar 

  15. Aron, A.R., Durston, S., Eagle, D.M., Logan, G.D., Stinear, C.M., Stuphorn, V.: Converging evidence for a Fronto-Basal-Ganglia network for inhibitory control of action and cognition. J. Neurosci. 27(44) (2007) 11860–11864.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Braver, T.S., Barch, D.M., Gray, J.R., Molfese, D.L., Snyder, A.: Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex. 11(9) (2001) 825–836.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIDCD R01DC007995.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Kay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kay, L.M. (2011). Beyond Sensory Coding: The Cognitive Context of Olfactory Neurodynamics. In: Wang, R., Gu, F. (eds) Advances in Cognitive Neurodynamics (II). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9695-1_12

Download citation