Skip to main content
Book cover

Chitin pp 35–60Cite as

Chitin in the Exoskeletons of Arthropoda: From Ancient Design to Novel Materials Science

Part of the Topics in Geobiology book series (TGBI,volume 34)

Abstract

The Arthropoda use chitin and various proteins as basic materials of their cuticle which is forming their exoskeletons. The exoskeleton is composed of skeletal elements with physical properties that are adapted to their function and the eco-physiological strains of the animal. These properties are achieved by forming elaborate microstructures that are organized in several hierarchical levels like the so-called twisted plywood structure, which is built by stacks of planar arrays of complex chitin-protein fibres. Additionally, the properties are influenced by variations in the chemical composition of the cuticle, for instance by combining the organic material with inorganic nano-particles. From a materials science point of view, this makes the cuticle to a hierarchical composite material of high functional versatility. The detailed investigation of microstructure, chemical composition and mechanical properties of cuticle from different skeletal elements of the crustacean Homarus americanus shows that cuticle can combine different design principles to create a high-performance anisotropic material. Numerical modelling of the cuticle using ab initio and multiscale approaches even enables the study of mechanical properties on hierarchical levels where experimental methods can no longer be applied. Understanding and eventually applying the underlying design principles of cuticle bears the potential for realization of a completely new generation of man-made structural materials.

Keywords

  • Chitin
  • Biological materials
  • Multi-scale model
  • Mechanical properties

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-9684-5_2
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-9684-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13

References

  • Andersen SO (1979) Biochemistry of insect cuticle. Annu Rev Entomol 24:29–61

    CrossRef  Google Scholar 

  • Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157

    CrossRef  Google Scholar 

  • Benveniste Y, Dvorak GJ, Chen T (1991) On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. J Mech Phys Solids 39:927–946

    CrossRef  Google Scholar 

  • Boßelmann F, Romano P, Fabritius H, Raabe D, Epple M (2007) The composition of the exoskeleton of two crustacea: the american lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta 463:65–68

    CrossRef  Google Scholar 

  • Bouligand Y (1970) Aspects ultrastructuraux de la calcification chez les Crabes, in: 7e Congrès int. Microsc. Électr., Grenoble, France, t. 3, 105–106

    Google Scholar 

  • Brusca RC (2000) Unraveling the history of arthropod diversification. Ann Mo Bot Gard 87:13–25

    CrossRef  Google Scholar 

  • Carlström D (1957) The crystal structure of α-chitin (Poly-N-Acetyl-D-Glucosamine). J Biophys Biochem Cytol 3:669–683

    CrossRef  Google Scholar 

  • Chen JC, Ramsköld L, Zhou G (1994) Evidence for monophyly and arthropod affinity of cambrian giant predators. Science 263:1304–1308

    CrossRef  Google Scholar 

  • Dillaman RM, Hequembourg S, Gay M (2005) Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J Morphol 263:356–374

    CrossRef  Google Scholar 

  • Dow MB, Dexter HB (1997) Development of stitched, braided and woven composite structures in the ACT program and at Langley research center (1985 to 1997) summary and bibliography. NASA CASI 301:621–0390

    Google Scholar 

  • Edgecombe GD (ed) (1998) Arthropod fossils and phylogeny. Columbia University Press, New York, USA

    Google Scholar 

  • Fabritius H, Sachs C, Romano P, Raabe D (2009) Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus. Adv Mater 21:391–400

    CrossRef  Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids – structure and properties, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Giraud-Guille M-M (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16:75–92

    CrossRef  Google Scholar 

  • Giraud-Guille M-M (1990) Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J Struct Biol 103:232–240

    CrossRef  Google Scholar 

  • Giraud-Guille M-M (1998) Plywood structures in nature. Curr Opin Solid State Mater Sci 3:221–228

    CrossRef  Google Scholar 

  • Gupta HS, Stachewicz U, Wagermaier W (2006) Mechanical modulation at the lamellar level in osteonal bone. J Mater Res 21:1913–1921

    CrossRef  Google Scholar 

  • Hadley NF (1986) The arthropod cuticle. Sci Am 255:98–106

    CrossRef  Google Scholar 

  • Hepburn HR, Joffe I, Green N, Nelson KJ (1975) Mechanical properties of a crab shell. Comp Biochem Physiol 50A:55l–554

    Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    CrossRef  Google Scholar 

  • Jalkanen KJ, Elstner M, Suhai S (2004) Amino acids and small peptides as building blocks for proteins: comparative theoretical and spectroscopic studies. J Mol Struct THEOCHEM 675:61–77

    CrossRef  Google Scholar 

  • Joffe I, Hepburn HR, Nelson KJ, Green N (1975) Mechanical properties of a crustacean exoskeleton. Comp Biochem Physiol 50A:545–549

    CrossRef  Google Scholar 

  • Khor E (2001) Chitin: fulfilling a biomaterials promise. Elsevier Science, Amsterdam, The Nederlands

    Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    CrossRef  Google Scholar 

  • Materials Studio. http://accelrys.com/products/materials-studio/modules/forcite.html

  • Minke R, Blackwell J (1978) The structure of α-chitin. Mol Biol 120:167–181

    CrossRef  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrx and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    CrossRef  Google Scholar 

  • Müller KJ, Walossek D (1985) A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden. Trans R Soc Edin Earth Sci 76:161–172

    CrossRef  Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon, Oxford, UK

    Google Scholar 

  • Nikolov S, Raabe D (2008) Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J 94:4220–4232

    CrossRef  Google Scholar 

  • Nikolov S, Petrov M, Lymperakis L, Friák M, Sachs C, Fabritius H, Raabe D, Neugebauer J (2010) Revealing the design principles of high-performance biological composites using ab initio multiscale simulations. Adv Mater 22:519–526

    Google Scholar 

  • Papka DS, Kyriakides S (1998) In-plane crushing of a polycarbonate honeycomb. Int J Solids Struct 35:239–267

    CrossRef  Google Scholar 

  • Piggott MR (1980) Load bearing fibre composites, 2nd edn. Kluwer, Norwell, USA

    Google Scholar 

  • Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier H-G, Yi S-B, Servos G, Hartwig HG (2005) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 283:1–7

    CrossRef  Google Scholar 

  • Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S-B, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng, A 421:143–153

    CrossRef  Google Scholar 

  • Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson J (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys 84:4891–4904

    CrossRef  Google Scholar 

  • Roer RD, Dillaman RM (1984) The structure and calcification of the crustacean cuticle. Am Zool 24:893–909

    Google Scholar 

  • Romano P, Fabritius H, Raabe D (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 3:301–309

    CrossRef  Google Scholar 

  • Sachs C, Fabritius H, Raabe D (2006a) Experimental investigation of the elastic-plastic deformation behavior of mineralized cuticle by digital image correlation. J Struct Biol 155:409–425

    CrossRef  Google Scholar 

  • Sachs C, Fabritius H, Raabe D (2006b) Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J Mater Res 21:1987–1995

    CrossRef  Google Scholar 

  • Sachs C, Fabritius H, Raabe D (2008) Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J Struct Biol 161:120–132

    CrossRef  Google Scholar 

  • Suresh S (2004) Fatigue of materials, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454–462

    CrossRef  Google Scholar 

  • Torquato S (1998) Effective stiffness tensor of composite media: II. Applications to isotropic dispersions. J Mech Phys Solids 46:1411–1440

    CrossRef  Google Scholar 

  • Vincent JFV (2002) Arthropod cuticle: a natural composite shell system. Compos A 33:1311–1315

    CrossRef  Google Scholar 

  • Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199

    CrossRef  Google Scholar 

  • Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fabritius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fabritius, H., Sachs, C., Raabe, D., Nikolov, S., Friák, M., Neugebauer, J. (2011). Chitin in the Exoskeletons of Arthropoda: From Ancient Design to Novel Materials Science. In: Gupta, N. (eds) Chitin. Topics in Geobiology, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9684-5_2

Download citation